ﻻ يوجد ملخص باللغة العربية
Moire systems provide a rich platform for studies of strong correlation physics. Recent experiments on hetero-bilayer transition metal dichalcogenide (TMD) Moire systems are exciting in that they manifest a relatively simple model system of an extended Hubbard model on a triangular lattice. Inspired by the prospect of the hetero-TMD Moire systems potential as a solid-state-based quantum simulator, we explore the extended Hubbard model on the triangular lattice using the density matrix renormalization group (DMRG). Specifically, we explore the two-dimensional phase space of the kinetic energy relative to the interaction strength $t/U$ and the further-range interaction strength $V_1/U$. We find competition between Fermi fluid, chiral spin liquid, spin density wave, and charge density wave. In particular, our finding of the optimal further-range interaction for the chiral correlation presents a tantalizing possibility.
Small-twist-angle transition metal dichalcogenide (TMD) heterobilayers develop isolated flat moire bands that are approximately described by triangular lattice generalized Hubbard models [PhysRevLett.121.026402]. In this article we explore the metall
We develop a minimal theory for the recently observed metal-insulator transition (MIT) in two-dimensional (2D) moire multilayer transition metal dichalcogenides (mTMD) using Coulomb disorder in the environment as the underlying mechanism. In particul
The formation of interfacial moire patterns from angular and/or lattice mismatch has become a powerful approach to engineer a range of quantum phenomena in van der Waals heterostructures. For long-lived and valley-polarized interlayer excitons in tra
Flexible long period moir e superlattices form in two-dimensional van der Waals crystals containing layers that differ slightly in lattice constant or orientation. In this Letter we show theoretically that isolated flat moir e bands described by gene
Fabricating van der Waals (vdW) bilayer heterostructures (BL-HS) by stacking the same or different two-dimensional (2D) layers, offers a unique physical system with rich electronic and optical properties. Twist-angle between component layers has emer