ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser-induced electron emission from Au nanowires: A probe for orthogonal polarizations

276   0   0.0 ( 0 )
 نشر من قبل Wayne Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoelectron field emission, induced by femtosecond laser pulses focused on metallic nanotips, provides spatially coherent and temporally short electron pulses. The properties of the photoelectron yield give insight into both the material properties of the nanostructure and the exciting laser focus. Ultralong nanoribbons, grown as a single crystal attached to a metallic taper, are sources of electron field emission that have not yet been characterized. In this report, photoemission from gold nanoribbon samples is studied and compared to emission from tungsten and gold tips. We observe that the emission from sharp tips generally depends on one transverse component of the exciting laser field, while the emission of a blunted nanoribbon is found to be sensitive to both components. We propose that this property makes photoemission from nanoribbons a candidate for position-sensitive detection of the longitudinal field component in a tightly focused beam.

قيم البحث

اقرأ أيضاً

Simultaneous measurements of hard X-ray by a Geiger counter and audible sound (10 Hz-20kHz) by a microphone from a thin water film in air were carried out under intense single and double pulse irradiations of femtosecond laser (35 fs, 800 nm, 1 kHz). Emission profiles of X-ray and sound under the single pulse irradiation by changing the water film position along the laser incident direction (Z-axis) show the same peak positions with a broader emission in sound (403{mu}m at FWHM) than in X-ray (37{mu}m). Under the double pulse irradiation condition with the time delay at 0 ps and 4.6 ns, it was clearly observed that the acoustic signal intensity is enhanced in associated with X-ray intensity enhancements. The enhancements can be assigned to laser ablation dynamics such as pre-plasma formation and transient surface roughness formation induced by the pre-pulse irradiation. For the acoustic signal under the double-pulse irradiation with the time delay, there was a weak dependence observed on the pre-pulse irradiation position at the laser focus. It is consistent with a long breakdown filament formation which makes the microphone-detection less position-sensitive.
Nanoscale hydrodynamic instability of ring-like molten rims around ablative microholes produced in nanometer-thick gold films by tightly focused nanosecond-laser pulses was experimentally explored in terms of laser pulse energy and film thickness. Th ese parametric dependencies of basic instability characteristics - order and period of the resulting nanocrowns - were analyzed, revealing its apparently Rayleigh-Plateau character, as compared to much less consistent possible van der Waals and impact origins. Along with fundamental importance, these findings will put forward pulsed laser ablation as an alternative facile inexpensive table-top approach to study such hydrodynamic instabilities developing at nanosecond temporal and nanometer spatial scales.
Ubiquitous to most molecular scattering methods is the challenge to retrieve bond distance and angle from the scattering signals since this requires convergence of pattern matching algorithms or fitting methods. This problem is typically exacerbated when imaging larger molecules or for dynamic systems with little a priori knowledge. Here, we employ laser-induced electron diffraction (LIED) which is a powerful means to determine the precise atomic configuration of an isolated gas-phase molecule with picometre spatial and attosecond temporal precision. We introduce a simple molecular retrieval method, which is based only on the identification of critical points in the oscillating molecular interference scattering signal that is extracted directly from the laboratory-frame photoelectron spectrum. The method is compared with a Fourier-based retrieval method, and we show that both methods correctly retrieve the asymmetrically stretched and bent field-dressed configuration of the asymmetric top molecule carbonyl sulfide (OCS), which is confirmed by our quantum-classical calculations.
Synthesis of graphene with reduced use of chemical reagents is essential for manufacturing scale-up and to control its structure and properties. In this paper, we report on a novel chemical-free mechanism of graphene exfoliation from graphite using l aser impulse. Our experimental setup consists of a graphite slab irradiated with an Nd:YAG laser of wavelength 532 nm and 10 ns pulse width. The results show the formation of graphene layers with conformational morphology from electron microscopy and Raman spectra. Based on the experimental results, we develop a simulation set up within the framework of the molecular dynamics that supplies the laser-induced electromagnetic energies to atoms in the graphite slab. We investigate the influence of different laser fluence on the exfoliation process of graphene. The variations in inter-layer interaction energy and inter-layer distance are the confirmative measures for the possible graphene layer formation. The simulation results confirm the exfoliation of a single layer graphene sheet for the laser power ranging from 100x10^(-14) to 2000x10^(-14) J/nm2. With an increase of laser fluence from 2000x10^(-14) to 4000x10^(-14) J/nm2, there is an increase in the graphene yield via the layer-after-layer exfoliation. The bridging bond dynamics between the successive graphene layers govern the possibility of second-layer exfoliation. The experimental and simulation observations are useful and promising for producing chemical-free graphene on a large scale for industrial and commercial applications.
We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle f ield-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا