ترغب بنشر مسار تعليمي؟ اضغط هنا

A complete ab initio view of Orbach and Raman spin-lattice relaxation in a Dysprosium coordination compound

49   0   0.0 ( 0 )
 نشر من قبل Alessandro Lunghi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unique electronic and magnetic properties of Lanthanides molecular complexes place them at the forefront of the race towards high-temperature single-ion magnets and magnetic quantum bits. The design of compounds of this class has so far been almost exclusively driven by static crystal field considerations, with emphasis on increasing the magnetic anisotropy barrier. This guideline has now reached its maximum potential and new progress can only come from a deeper understanding of spin-phonon relaxation mechanisms. In this work we compute relaxation times fully ab initio and unveil the nature of all spin-phonon relaxation mechanisms, namely Orbach and Raman pathways, in a prototypical Dy single-ion magnet. Computational predictions are in agreement with the experimental determination of spin relaxation time and crystal field anisotropy, and show that Raman relaxation, dominating at low temperature, is triggered by low-energy phonons and little affected by further engineering of crystal field axiality. A comprehensive analysis of spin-phonon coupling mechanism reveals that molecular vibrations beyond the ions first coordination shell can also assume a prominent role in spin relaxation through an electrostatic polarization effect. Therefore, this work shows the way forward in the field by delivering a novel and complete set of chemically-sound design rules tackling every aspect of spin relaxation at any temperature

قيم البحث

اقرأ أيضاً

The correct calculation of formation enthalpy is one of the enablers of ab-initio computational materials design. For several classes of systems (e.g. oxides) standard density functional theory produces incorrect values. Here we propose the Coordinat ion Corrected Enthalpies method (CCE), based on the number of nearest neighbor cation-anion bonds, and also capable of correcting relative stability of polymorphs. CCE uses calculations employing the Perdew, Burke and Ernzerhof (PBE), Local Density Approximation (LDA) and Strongly Constrained and Appropriately Normed (SCAN) exchange correlation functionals, in conjunction with a quasiharmonic Debye model to treat zero-point vibrational and thermal effects. The benchmark, performed on binary and ternary oxides (halides), shows very accurate room temperature results for all functionals, with the smallest mean absolute error of 27 (24) meV/atom obtained with SCAN. The zero-point vibrational and thermal contributions to the formation enthalpies are small and with different signs - largely cancelling each other.
The Fermi-surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by emph{ab initio} calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [Phys.~ Rev.~Lett. textbf{109}, 236603 (2012)]. We analyze in detail the origin of the gigantic anisotropy in $5d$ hcp metals as compared to $5d$ cubic metals by band-structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4$d$ and 3$d$) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as $6000%$ in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green-function method.
We study the Raman spectrum of CrI$_3$, a material that exhibits magnetism in a single-layer. We employ first-principles calculations within density functional theory to determine the effects of polarization, strain, and incident angle on the phonon spectra of the 3D bulk and the single-layer 2D structure, for both the high- and low-temperature crystal structures. Our results are in good agreement with existing experimental measurements and serve as a guide for additional investigations to elucidate the physics of this interesting material.
Spin relaxation and decoherence is at the heart of spintronics and spin-based quantum information science. Currently, theoretical approaches that can accurately predict spin relaxation of general solids including necessary scattering pathways and cap able for ns to ms simulation time are urgently needed. We present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast spin dynamics for general solid-state systems. Through the complete first-principles descriptions of pump, probe and scattering processes including electron-phonon, electron-impurity and electron-electron scatterings with self-consistent spin-orbit couplings, our method can directly simulate the ultrafast pump-probe measurements for coupled spin and electron dynamics over ns at any temperature and doping levels. We apply this method to a prototypical system GaAs and obtain excellent agreement with experiments. We found that the relative contributions of different scattering mechanisms and phonon modes differ considerably between spin and carrier relaxation processes. In sharp contrast to previous work based on model Hamiltonians, we point out that the electron-electron scattering is negligible at room temperature but becomes very important at low temperatures for spin relaxation in n-type GaAs. Most importantly, we examine the applicable conditions of the commonly-used Dyakonov-Perel relation, which may break down for individual scattering processes. Our work provides a predictive computational platform for spin relaxation in solids, which has unprecedented potentials for designing new materials ideal for spintronics and quantum information technology.
We study the mutual coupling of spin fluctuations and lattice vibrations in paramagnetic CrN by combining atomistic spin dynamics and ab initio molecular dynamics. The two degrees of freedom are dynamically coupled leading to non-adiabatic effects. T hose effects suppress the phonon life times at low temperature compared to an adiabatic approach. The here identified dynamic coupling provides an explanation for the experimentally observed unexpected temperature dependence of the thermal conductivity of magnetic semiconductors above the magnetic ordering temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا