ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast electric control of cavity mediated single-photon and photon-pair generation with semiconductor quantum dots

208   0   0.0 ( 0 )
 نشر من قبل David Bauch
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Employing the ultrafast control of electronic states of a semiconductor quantum dot in a cavity, we introduce a novel approach to achieve on-demand emission of single photons with almost perfect indistinguishability and photon pairs with near ideal entanglement. Our scheme is based on optical excitation off-resonant to a cavity mode followed by ultrafast control of the electronic states using the time-dependent quantum-confined Stark effect, which then allows for cavity-resonant emission. Our theoretical analysis takes into account cavity-loss mechanisms, the Stark effect, and phonon-induced dephasing allowing realistic predictions for finite temperatures.



قيم البحث

اقرأ أيضاً

Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of the photons [1,2] is a promising platform for investigations of quantum mechanical properties of motion of macroscopic bodies and thereby the limits of quantum mechanics [3,4]. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength towards the scale of the cavity damping rate. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities [5-8]. Addressing these issues, here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation pressure interaction energy by six orders of magnitude, allowing to approach the strong coupling regime, where a single quantum of vibrations shifts the cavity frequency by more than its linewidth. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping due to the two-level system. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t o a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated long-distance coupling effectively minimizes undesirable direct cross-talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
217 - S. Zhao , J. Lavie , L. Rondin 2018
In the field of condensed matter, graphene plays a central role as an emerging material for nanoelectronics. Nevertheless, graphene is a semimetal, which constitutes a severe limitation for some future applications. Therefore, a lot of efforts are be ing made to develop semiconductor materials whose structure is compatible with the graphene lattice. In this perspective, little pieces of graphene represent a promising alternative. In particular, their electronic, optical and spin properties can be in principle controlled by designing their size, shape and edges. As an example, graphene nanoribbons with zigzag edges have localized spin polarized states. Likewise, singlet-triplet energy splitting can be chosen by designing the structure of graphene quantum dots. Moreover, bottom-up molecular synthesis put these potentialities at our fingertips. Here, we report on a single emitter study that directly addresses the intrinsic properties of a single graphene quantum dot. In particular, we show that graphene quantum dots emit single photons at room temperature with a high purity, a high brightness and a good photostability. These results pave the way to the development of new quantum systems based on these nanoscale pieces of graphene.
A semiconductor quantum dot can generate highly coherent and indistinguishable single photons. However, intrinsic semiconductor dephasing mechanisms can reduce the visibility of two-photon interference. For an electron in a quantum dot, a fundamental dephasing process is the hyperfine interaction with the nuclear spin bath. Here we directly probe the consequence of the fluctuating nuclear spins on the elastic and inelastic scattered photon spectra from a resident electron in a single dot. We find the nuclear spin fluctuations lead to detuned Raman scattered photons which are distinguishable from both the elastic and incoherent components of the resonance fluorescence. This significantly reduces two-photon interference visibility. However, we demonstrate successful screening of the nuclear spin noise which enables the generation of coherent single photons that exhibit high visibility two-photon interference.
We analyze theoretically the charging current into, and the transport current through, a nanoscale two-dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon cavity. A plunger gate is used to place spec ific many-body states of the interacting system in the bias window defined by the external leads. We show how the transport phenomena active in the many-level complex central system strongly depend on the gate voltage. We identify a resonant transport through the central system as the two spin components of the one-electron ground state are in the bias window. This resonant transport through the lowest energy electron states seems to a large extent independent of the detuned photon field when judged from the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active internal transitions bringing the system into the steady state. The number of initially present photons determines when the system reaches the real steady state. With two-electron states in the bias window we observe a more complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system. The presence of the radiative channels makes this phenomena dependent on the number of photons initially in the cavity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا