ترغب بنشر مسار تعليمي؟ اضغط هنا

Tether-cutting and Overlying Magnetic Reconnections in an MHD Simulation of Prominence-cavity System

89   0   0.0 ( 0 )
 نشر من قبل Tie Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the magnetic reconnection in an MHD simulation of a coronal magnetic flux rope (MFR) confined by a helmet streamer, where a prominence-cavity system forms. This system includes a hot cavity surrounding a prominence with prominence horns and a central hot core above the prominence. The evolution of the system from quasi-equilibrium to eruption can be divided into four phases: quasi-static, slow rise, fast rise, and propagation phases. The emerged MFR initially stays quasi-static and magnetic reconnection occurs at the overlying high-Q (squashing factor) apex region, which gradually evolves into a hyperbolic flux tube (HFT). The decrease of the integrated magnetic tension force (above the location of the overlying reconnection) is due to the removal of overlying confinement by the enhanced overlying reconnection between the MFR and the overlying fields at the apex HFT, thus engines the slow rise of the MFR with a nearly constant velocity. Once the MFR reaches the regime of torus instability, another HFT immediately forms at the dip region under the MFR, followed by the explosive flare reconnection. The integrated resultant force (above the location of the flare reconnection) exponentially increases, which drives the exponential fast rise of the MFR. The system enters the propagation phase, once its apex reaches the height of about one solar radius above the photosphere. The simulation reproduces the main processes of one group of prominence eruptions especially those occurring on the quiet Sun.

قيم البحث

اقرأ أيضاً

We present a simplified analytic model of a quadrupolar magnetic field and flux rope to model coronal mass ejections. The model magnetic field is two-dimensional, force-free and has current only on the axis of the flux rope and within two currents sh eets. It is a generalization of previous models containing a single current sheet anchored to a bipolar flux distribution. Our new model can undergo quasi-static evolution due either to changes at the boundary or to magnetic reconnection at either current sheet. We find that all three kinds of evolution can lead to a catastrophe known as loss of equilibrium. Some equilibria can be driven to catastrophic instability either through reconnection at the lower current sheet, known as tether cutting, or through reconnection at the upper current sheet, known as breakout. Other equilibria can be destabilized through only one and not the other. Still others undergo no instability, but evolve increasingly rapidly in response to slow steady driving (ideal or reconnective). One key feature of every case is a response to reconnection different from that found in simpler systems. In our two-current sheet model a reconnection electric field in one current sheet causes the current in that sheet to {em increase} rather than decrease. This suggests the possibility for the microscopic reconnection mechanism to run away.
190 - Yu-Hao Zhou , C. Xia , R. Keppens 2018
Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic and thermal structures as the oscillation characteristics depend on their interplay with the solar corona. Prominence oscillations can be classified into longitudinal and transverse types. We perform three-dimensional ideal magnetohydrodynamic simulations of prominence oscillations along a magnetic flux rope, with the aim to compare the oscillation periods with those predicted by various simplified models and to examine the restoring force. We find that the longitudinal oscillation has a period of about 49 minutes, which is in accordance with the pendulum model where the field-ligned component of gravity serves as the restoring force. In contrast, the horizontal transverse oscillation has a period of about 10 minutes and the vertical transverse oscillation has a period of about 14 minutes, and both of them can be nicely fitted with a two-dimensional slab model. We also find that the magnetic tension force dominates most of the time in transverse oscillations, except for the first minute when magnetic pressure overwhelms.
The magnetohydrodynamics of active region NOAA 11283 is simulated using an initial non-force-free magnetic field extrapolated from its photospheric vector magnetogram. We focus on the magnetic reconnections at a magnetic null point that participated in the X2.1 flare on 2011 September 6 around 22:21 UT (SOL2011-09-06T22:21X2.1) followed by the appearance of circular flare ribbons and coronal dimmings. The initial magnetic field from extrapolation displays a three-dimensional (3D) null topology overlying a sheared arcade. Prior to the flare, magnetic loops rise due to the initial Lorentz force, and reconnect at the 3D null, leading to expansion and loss of confined plasma that produce the observed pre-flare coronal dimmings. Further, the simulated dynamics documents the transfer of twist from the arcade to the overlying loops through reconnections, developing a flux rope. The non-parallel field lines comprising the rope and lower-lying arcades form an X-type geometry. Importantly, the simultaneous reconnections at the 3D null and the X-type geometry can explain the observed circular and parallel flare ribbons. Reconnections at the 3D null transform closed inner spine field lines into open field lines of the outer spine. The footpoints of these open field lines correspond to a ring-shaped coronal dimming region, tracing the dome. Further, the flux rope bifurcates because of these reconnections which also results in the generation of open magnetic field lines. The plasma loss along the open field lines can potentially explain the observed coronal dimming.
In an idealized system where four current channels interact in a two-dimensional periodic setting, we follow the detailed evolution of current sheets (CSs) forming in between the channels, as a result of a large-scale merging. A central X-point colla pses and a gradually extending CS marks the site of continuous magnetic reconnection. Using grid-adaptive, non-relativistic, resistive magnetohydrodynamic (MHD) simulations, we establish that slow, near-steady Sweet-Parker reconnection transits to a chaotic, multi-plasmoid fragmented state, when the Lundquist number exceeds about ten to the fourth power, well in the range of previous studies on plasmoid instability. The extreme resolution employed in the MHD study shows significant magnetic island substructures. With relativistic test-particle simulations, we explore how charged particles can be accelerated in the vicinity of an O-point, either at embedded tiny-islands within larger monster-islands or near the centers of monster-islands. While the planar MHD setting artificially causes strong acceleration in the ignored third direction, it also allows for the full analytic study of all aspects leading to the acceleration and the in-plane-projected trapping of particles in the vicinities of O-points. Our analytic approach uses a decomposition of the particle velocity in slow- and fast-changing components, akin to the Reynolds decomposition in turbulence studies. Our analytic description is validated with several representative test-particle simulations. We find that after an initial non-relativistic motion throughout a monster island, particles can experience acceleration in the vicinity of an O-point beyond 0.7c, at which speed the acceleration is at its highest efficiency
We study a turbulent helical dynamo in a periodic domain by solving the ideal magnetohydrodynamic (MHD) equations with the FLASH code using the divergence-cleaning eight-wave method and compare our results with direct numerical simulations (DNS) usin g the Pencil Code. At low resolution, FLASH reproduces the DNS results qualitatively by developing the large-scale magnetic field expected from DNS, but at higher resolution, no large-scale magnetic field is obtained. In all those cases in which a large-scale magnetic field is generated, the ideal MHD results yield too little power at small scales. As a consequence, the small-scale current helicity is too small compared with that of the DNS. The resulting net current helicity has then always the wrong sign, and its statistical average also does not approach zero at late times, as expected from the DNS. Our results have implications for astrophysical dynamo simulations of stellar and galactic magnetism using ideal MHD codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا