ترغب بنشر مسار تعليمي؟ اضغط هنا

Threshold anomalies of ultra-high energy cosmic photons due to Lorentz invariance violation

105   0   0.0 ( 0 )
 نشر من قبل Bo-Qiang Ma
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From special relativity, photon annihilation process HepProcess{{Pgg}{Pgg}{to}{Pep}{Pem}} prevents cosmic photons with energies above a threshold to propagate a long distance in cosmic space due to their annihilation with low energy cosmic background photons. However, modifications of the photon dispersion relation from Lorentz invariance violation~(LIV) can cause novel phenomena beyond special relativity to happen. In this paper, we point out that these phenomena include optical transparency, threshold reduction and reappearance of ultra-high energy photons in cosmic space. The recent observation of near and above PeV photon events by the LHAASO Collaboration reveals the necessity to consider the threshold anomalies. Future observations of above threshold photons from extragalactic sources can testify LIV properties of photons.

قيم البحث

اقرأ أيضاً

Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega^2=k^2+xi_n k^2(k/M_Pl)^n with new terms suppressed by a power n of the Planck mass M_Pl. We show that first and second order terms of size xi_1 > 10^(-14) and xi_2 < -10^(-6), respectively, would lead to a photon component in cosmic rays above 10^(19) eV that should already have been detected, if corresponding terms for electrons and positrons are significantly smaller. This suggests that Lorentz invariance breakings suppressed up to second order in the Planck scale are unlikely to be phenomenologically viable for photons.
169 - Xiao-Jun Bi 2009
The GZK cutoff predicted at the Ultra High Energy Cosmic Ray (UHECR) spectrum as been observed by the HiRes and Auger experiments. The results put severe constraints on the effect of Lorentz Invariance Violation(LIV) which has been introduced to expl ain the absence of GZK cutoff indicated in the AGASA data. Assuming homogeneous source distribution with a single power law spectrum, we calculate the spectrum of UHECRs observed on Earth by taking the processes of photopion production, $e^+e^-$ pair production and adiabatic energy loss into account. The effect of LIV is also taken into account in the calculation. By fitting the HiRes monocular spectra and the Auger combined spectra, we show that the LIV parameter is constrained to $xi=-0.8^{+3.2}_{-0.5}times10^{-23}$ and $0.0^{+1.0}_{-0.4}times10^{-23}$ respectively, which is well consistent with strict Lorentz Invariance up to the highest energy.
64 - Shu Zhang , Bo-Qiang Ma 2014
The constancy of light speed is a basic assumption in Einsteins special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-de pendent due to the Lorentz invariance violation~(LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass~8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.
We consider the effects of active-sterile secret neutrino interactions, mediated by a new pseudoscalar particle, on high- and ultra high-energy neutrino fluxes. In particular, we focus on the case of 3 active and 1 sterile neutrino coupled by a flavo r dependent interaction, extending the case of 1 active and 1 sterile neutrino we have recently examined. We find that, depending on the kind of interaction of sterile neutrino with the active sector, new regions of the parameter space for secret interactions are now allowed leading to interesting phenomenological implications on two benchmark fluxes we consider, namely an astrophysical power law flux, in the range below 100 PeV, and a cosmogenic flux, in the Ultrahigh energy range. First of all, the final active fluxes can present a measurable depletion observable in future experiments. Especially, in the case of only tau neutrino interacting, we find that the effects on the astrophysical power law flux can be so large to be already probed by the IceCube experiment. Moreover, we find intriguing features in the energy dependence of the flavor ratio.
This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsep in-Kuzmin (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors $gamma sim O(10^{11})$. For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous gamma-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ``Maximal Attainable Velocities. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic gamma-rays. For multi TeV gamma-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects next to them - as probable UHECR sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا