ﻻ يوجد ملخص باللغة العربية
We report the detection of 8.914-hr variability in both optical and ultraviolet light curves of LP 40-365 (also known as GD 492), the prototype for a class of partly burnt runaway stars that have been ejected from a binary due to a thermonuclear supernova event. We first detected this 1.0% amplitude variation in optical photometry collected by the Transiting Exoplanet Survey Satellite. Re-analysis of observations from the Hubble Space Telescope at the TESS period and ephemeris reveal a 5.8% variation in the ultraviolet of this 9800 K stellar remnant. We propose that this 8.914-hr photometric variation reveals the current surface rotation rate of LP 40-365, and is caused by some kind of surface inhomogeneity rotating in and out of view, though a lack of observed Zeeman splitting puts an upper limit on the magnetic field of <20 kG. We explore ways in which the present rotation period can constrain progenitor scenarios if angular momentum was mostly conserved, which suggests that the survivor LP 40-365 was not the donor star but was most likely the bound remnant of a mostly disrupted white dwarf that underwent advanced burning from an underluminous (Type Iax) supernova.
We report the discovery of three stars that, along with the prototype LP40-365, form a distinct class of chemically peculiar runaway stars that are the survivors of thermonuclear explosions. Spectroscopy of the four confirmed LP 40-365 stars finds ON
LP 40-365 (aka GD 492) is a nearby low-luminosity hyper-runaway star with an extremely unusual atmospheric composition, which has been proposed as the remnant of a white dwarf that survived a subluminous Type Ia supernova (SN Ia) in a single-degenera
The recently discovered hypervelocity white dwarf LP 40-65 (aka GD 492) has been suggested as the outcome of the failed disruption of a white dwarf in a sub-luminous Type Ia supernova (SN Ia). We present new observations confirming GD 492 as a single
We present optical spectroscopy, astrometry, radio, and X-ray observations of the runaway binary LP 400-22. We refine the orbital parameters of the system based on our new radial velocity observations. Our parallax data indicate that LP 400-22 is sig
In the cores of young dense star clusters repeated stellar collisions involving the same object can occur, which has been suggested to lead to the formation of an intermediate-mass black hole. In order to verify this scenario we compute the detailed