ﻻ يوجد ملخص باللغة العربية
Light-matter coupling in excitonic materials has been the subject of intense investigation due to emergence of new excitonic materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room-temperatures with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D-HOIPs crystals without the necessity of an external cavity. We report concurrent occurrence of multiple-orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (> 100 nm) crystals and near-unity absorption in thin (< 20 nm) crystals. We observe resonances with quality factors > 250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D-HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.
Polaritonic devices exploit the coherent coupling between excitonic and photonic degrees of freedom to perform highly nonlinear operations with low input powers. Most of the current results exploit excitons in epitaxially grown quantum wells and requ
The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive
We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials into single photon beams. The approach rests on collective plasmonic Bloch modes of hyperbolic metamaterials which p
Quadrupole topological insulator is a symmetry-protected higher-order topological phase with intriguing topology of Wannier bands, which, however, has not yet been realized in plasmonic metamaterials. Here, we propose a lattice of plasmon-polaritonic
Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively-charged nitrogen-vacancy (NV$^-$) centres being discussed as a potential laser medium since the 1980s, there have been no