ﻻ يوجد ملخص باللغة العربية
Given a collection of untrimmed and unsegmented videos, video corpus moment retrieval (VCMR) is to retrieve a temporal moment (i.e., a fraction of a video) that semantically corresponds to a given text query. As video and text are from two distinct feature spaces, there are two general approaches to address VCMR: (i) to separately encode each modality representations, then align the two modality representations for query processing, and (ii) to adopt fine-grained cross-modal interaction to learn multi-modal representations for query processing. While the second approach often leads to better retrieval accuracy, the first approach is far more efficient. In this paper, we propose a Retrieval and Localization Network with Contrastive Learning (ReLoCLNet) for VCMR. We adopt the first approach and introduce two contrastive learning objectives to refine video encoder and text encoder to learn video and text representations separately but with better alignment for VCMR. The video contrastive learning (VideoCL) is to maximize mutual information between query and candidate video at video-level. The frame contrastive learning (FrameCL) aims to highlight the moment region corresponds to the query at frame-level, within a video. Experimental results show that, although ReLoCLNet encodes text and video separately for efficiency, its retrieval accuracy is comparable with baselines adopting cross-modal interaction learning.
Despite the achievements of large-scale multimodal pre-training approaches, cross-modal retrieval, e.g., image-text retrieval, remains a challenging task. To bridge the semantic gap between the two modalities, previous studies mainly focus on word-re
We tackle the task of video moment retrieval (VMR), which aims to localize a specific moment in a video according to a textual query. Existing methods primarily model the matching relationship between query and moment by complex cross-modal interacti
Training a supervised neural network classifier typically requires many annotated training samples. Collecting and annotating a large number of data points are costly and sometimes even infeasible. Traditional annotation process uses a low-bandwidth
This paper proposes a self-supervised learning approach for video features that results in significantly improved performance on downstream tasks (such as video classification, captioning and segmentation) compared to existing methods. Our method ext
Attempt to fully discover the temporal diversity and chronological characteristics for self-supervised video representation learning, this work takes advantage of the temporal dependencies within videos and further proposes a novel self-supervised me