ﻻ يوجد ملخص باللغة العربية
The proposed Circular Electron Positron Collider (CEPC), with a center-of-mass energy $sqrt{s} = 240$ GeV, will serve as a Higgs factory. At the same time, it can offer good opportunity for searches for new physics phenomena at low energy: these are challenging in hadron colliders, but well motivated by some theory models developed to explain, e.g., the relic abundance of dark matter. This paper presents sensitivity studies of chargino pair production, considering scenarios for both a Bino-like and a Higgsino-like neutralino as lightest supersymmetric particle, using full Monte Carlo (MC) simulation. With the assumption of systematic uncertainties at the level of 5%, the CEPC has the ability to discover chargino pair production up to the kinematic limit of $sqrt{s}/2$ for both considered cases. Thanks to the conservative assumptions on the systematic uncertainties and the low dependence on the reconstruction model and detector geometry considered, the results of this study can be considered as a reference and benchmark also for similar searches in other similar electron positron colliders, such as Future Circular Collider $e^{+}e^{-}$ (FCC-ee) and the International Linear Collider (ILC).
The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the sa
We study chargino pair production on the heavy Higgs resonances at a muon collider in the MSSM. At $sqrt{s} approx 350$ GeV cross sections up to 2 pb are reached depending on the supersymmetric scenario and the beam energy spread. The resonances of t
We make use of recently released parton density functions (PDFs) with threshold-resummation improvement to consistently calculate theoretical predictions for neutralino and chargino pair production at next-to-leading order and next-to-leading logarit
We present a study performed for the CLIC CDR on the measurement of chargino and neutralino production at sqrt(s) = 3 TeV. Fully hadronic final states with four jets and missing transverse energy were considered. Results obtained using full detector
The precise determination of the $B_c to tau u_tau$ branching ratio provides an advantageous opportunity for understanding the electroweak structure of the Standard Model, measuring the CKM matrix element $|V_{cb}|$ and probing new physics models. In