ترغب بنشر مسار تعليمي؟ اضغط هنا

A Received Power Model for Reconfigurable Intelligent Surface and Measurement-based Validations

51   0   0.0 ( 0 )
 نشر من قبل Haifan Yin
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The idea of using a Reconfigurable Intelligent Surface (RIS) consisting of a large array of passive scattering elements to assist wireless communication systems has recently attracted much attention from academia and industry. A central issue with RIS is how much power they can effectively convey to the target radio nodes. Regarding this question, several power level models exist in the literature but few have been validated through experiments. In this paper, we propose a radar cross section-based received power model for an RIS-aided wireless communication system that is rooted in the physical properties of RIS. Our proposed model follows the intuition that the received power is related to the distances from the transmitter/receiver to the RIS, the angles in the TX-RIS-RX triangle, the effective area of each element, and the reflection coefficient of each element. To the best of our knowledge, this paper is the first to model the angle-dependent phase shift of the reflection coefficient, which is typically ignored in existing literature. We further measure the received power with our experimental platform in different scenarios to validate our model. The measurement results show that our model is appropriate both in near field and far field and can characterize the impact of angles well.

قيم البحث

اقرأ أيضاً

Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. I n this paper, an IRS-aided secure spatial modulation (SM) is proposed, where the IRS perform passive beamforming and information transfer simultaneously by adjusting the on-off states of the reflecting elements. We formulate an optimization problem to maximize the average secrecy rate (SR) by jointly optimizing the passive beamforming at IRS and the transmit power at transmitter under the consideration that the direct pathes channels from transmitter to receivers are obstructed by obstacles. As the expression of SR is complex, we derive a newly fitting expression (NASR) for the expression of traditional approximate SR (TASR), which has simpler closed-form and more convenient for subsequent optimization. Based on the above two fitting expressions, three beamforming methods, called maximizing NASR via successive convex approximation (Max-NASR-SCA), maximizing NASR via dual ascent (Max-NASR-DA) and maximizing TASR via semi-definite relaxation (Max-TASR-SDR) are proposed to improve the SR performance. Additionally, two transmit power design (TPD) methods are proposed based on the above two approximate SR expressions, called Max-NASR-TPD and Max-TASR-TPD. Simulation results show that the proposed Max-NASR-DA and Max-NASR-SCA IRS beamformers harvest substantial SR performance gains over Max-TASR-SDR. For TPD, the proposed Max-NASR-TPD performs better than Max-TASR-TPD. Particularly, the Max-NASR-TPD has a closed-form solution.
Multiple-input multiple-output (MIMO) signaling is one of the key technologies of current mobile communication systems. However, the complex and expensive radio frequency (RF) chains have always limited the increase of MIMO scale. In this paper, we p ropose a MIMO transmission architecture based on a dual-polarized reconfigurable intelligent surface (RIS), which can directly achieve modulation and transmission of multichannel signals without the need for conventional RF chains. Compared with previous works, the proposed architecture can improve the integration of RIS-based transmission systems. A prototype of the dual-polarized RIS-based MIMO transmission system is built and the experimental results confirm the feasibility of the proposed architecture. The dual-polarized RIS-based MIMO transmission architecture provides a promising solution for realizing low-cost ultra-massive MIMO towards future networks.
Reconfigurable intelligent surface (RIS)-aided networks have been investigated for the purpose of improving the system performance. However, the introduced unit modulus phase shifts and coupling characteristic bring enormous challenges to the optimiz ation in the RIS-aided networks. Many efforts have been made to jointly optimize phase shift vector and other parameters. This article intends to survey the latest research results about the optimization in RIS-aided networks. A taxonomy is devised to categorize the existing literatures based on optimization types, phase shift form, and decoupling methods. Furthermore, in alternating optimization framework, we introduce in detail how to exploit the aforementioned technologies flexibly. It is known that most works could not guarantee a stationary point. To overcome this problem, we propose a unified framework for the optimization problem of RIS-aided networks with continuous phase shifts to find a stationary point. Finally, key challenges are outlined to provide guidelines for the domain researchers and designers to explore more efficient optimization frameworks, and then open issues are discussed.
169 - Hehao Niu , Zheng Chu , Fuhui Zhou 2021
In this work, we investigate a novel simultaneous transmission and reflection reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output downlink system, where three practical transmission protocols, namely, energy splitting (ES ), mode selection (MS), and time splitting (TS), are studied. For the system under consideration, we maximize the weighted sum rate with multiple coupled variables. To solve this optimization problem, a block coordinate descent algorithm is proposed to reformulate this problem and design the precoding matrices and the transmitting and reflecting coefficients (TARCs) in an alternate manner. Specifically, for the ES scheme, the precoding matrices are solved using the Lagrange dual method, while the TARCs are obtained using the penalty concave-convex method. Additionally, the proposed method is extended to the MS scheme by solving a mixed-integer problem. Moreover, we solve the formulated problem for the TS scheme using a one-dimensional search and the Majorization-Minimization technique. Our simulation results reveal that: 1) Simultaneous transmission and reflection RIS (STAR-RIS) can achieve better performance than reflecting-only RIS; 2) In unicast communication, TS scheme outperforms the ES and MS schemes, while in broadcast communication, ES scheme outperforms the TS and MS schemes.
The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for fut ure wireless communication networks. In this paper, the physical layer security (PLS) for a RIS-aided NOMA 6G networks is investigated, in which a RIS is deployed to assist the two dead zone NOMA users and both internal and external eavesdropping are considered. For the scenario with only internal eavesdropping, we consider the worst case that the near-end user is untrusted and may try to intercept the information of far-end user. A joint beamforming and power allocation sub-optimal scheme is proposed to improve the system PLS. Then we extend our work to a scenario with both internal and external eavesdropping. Two sub-scenarios are considered in this scenario: one is the sub-scenario without channel state information (CSI) of eavesdroppers, and another is the sub-scenario where the eavesdroppers CSI are available. For the both sub-scenarios, a noise beamforming scheme is introduced to be against the external eavesdroppers. An optimal power allocation scheme is proposed to further improve the system physical security for the second sub-scenario. Simulation results show the superior performance of the proposed schemes. Moreover, it has also been shown that increasing the number of reflecting elements can bring more gain in secrecy performance than that of the transmit antennas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا