ﻻ يوجد ملخص باللغة العربية
We study Bayesian automated mechanism design in unstructured dynamic environments, where a principal repeatedly interacts with an agent, and takes actions based on the strategic agents report of the current state of the world. Both the principal and the agent can have arbitrary and potentially different valuations for the actions taken, possibly also depending on the actual state of the world. Moreover, at any time, the state of the world may evolve arbitrarily depending on the action taken by the principal. The goal is to compute an optimal mechanism which maximizes the principals utility in the face of the self-interested strategic agent. We give an efficient algorithm for computing optimal mechanisms, with or without payments, under different individual-rationality constraints, when the time horizon is constant. Our algorithm is based on a sophisticated linear program formulation, which can be customized in various ways to accommodate richer constraints. For environments with large time horizons, we show that the principals optimal utility is hard to approximate within a certain constant factor, complementing our algorithmic result. We further consider a special case of the problem where the agent is myopic, and give a refined efficient algorithm whose time complexity scales linearly in the time horizon. Moreover, we show that memoryless mechanisms do not provide a good solution for our problem, in terms of both optimality and computational tractability. These results paint a relatively complete picture for automated dynamic mechanism design in unstructured environments. Finally, we present experimental results where our algorithms are applied to synthetic dynamic environments with different characteristics, which not only serve as a proof of concept for our algorithms, but also exhibit intriguing phenomena in dynamic mechanism design.
We study the problem of automated mechanism design with partial verification, where each type can (mis)report only a restricted set of types (rather than any other type), induced by the principals limited verification power. We prove hardness results
The Competition Complexity of an auction measures how much competition is needed for the revenue of a simple auction to surpass the optimal revenue. A classic result from auction theory by Bulow and Klemperer [9], states that the Competition Complexi
We study the problem of repeatedly auctioning off an item to one of $k$ bidders where: a) bidders have a per-round individual rationality constraint, b) bidders may leave the mechanism at any point, and c) the bidders valuations are adversarially cho
In this study, we apply reinforcement learning techniques and propose what we call reinforcement mechanism design to tackle the dynamic pricing problem in sponsored search auctions. In contrast to previous game-theoretical approaches that heavily rel
Game theory is often used as a tool to analyze decentralized systems and their properties, in particular, blockchains. In this note, we take the opposite view. We argue that blockchains can and should be used to implement economic mechanisms because