ﻻ يوجد ملخص باللغة العربية
The current paper is dedicated to developing a (3+1) decomposition for the minimal gravitational Standard-Model Extension. Our setting is explicit diffeomorphism violation and we focus on the background fields known in the literature as $u$ and $s^{mu u}$. The Hamiltonian formalism is developed for these contributions, which amounts to deriving modified Hamiltonian and momentum constraints. We then study the connection between these modified constraints and the modified Einstein equations. Implications are drawn on the form of the background fields to guarantee the internal consistency of the corresponding modified-gravity theories. In the course of our analysis, we obtain a set of consistency requirements for $u$ and certain sectors of $s^{mu u}$. We argue that the constraint structure remains untouched when these conditions are satisfied. Our results shed light on explicit violations of diffeomorphism invariance and local Lorentz invariance in gravity. They may turn out to be valuable for developing a better understanding of effective modified-gravity theories.
We use the ideas of entropic gravity to derive the FRW cosmological model and show that for late time evolution we have an effective cosmological constant. By using the first law of thermodynamics and the modified entropy area relationship derived fr
Working directly with a general Hamiltonian for the spacetime metric with the $3+1$ decomposition and keeping only the spatial covariance, we investigate the possibility of reducing the number of degrees of freedom by introducing an auxiliary constra
The gravitational memory effects of Chern-Simons modified gravity are considered in the asymptotically flat spacetime. If the Chern-Simons scalar does not directly couple with the ordinary matter fields, there are also displacement, spin and center-o
We compute the Hamiltonian for spherically symmetric scalar field collapse in Einstein-Gauss-Bonnet gravity in D dimensions using slicings that are regular across future horizons. We first reduce the Lagrangian to two dimensions using spherical symme
Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of deg