ﻻ يوجد ملخص باللغة العربية
We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev-Zeldovich-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 dataset. With signal-to-noise of 62 (43) for galaxy (weak lensing) profiles over scales of about $0.2-20h^{-1}$ Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: 1. The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. 2. The full mass profile is also consistent with the simulations; hence it can constrain alternative dark matter models that modify the mass distribution of clusters. 3. The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. This can be used to constrain processes such as quenching and tidal disruption that alter the galaxy distribution inside the halo, and scale-dependent features in the transition regime outside the halo. We measure the dependence of the profile shapes on the galaxy sample, redshift and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation and cosmology are discussed.
We present a detection of the splashback feature around galaxy clusters selected using their Sunyaev-Zeldovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius,
Following on our previous study of an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry, we perform an SZ analysis of a set of simulated clusters and present their mass an
Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing and the caustic technique, are independent of the assumption of dynamical equilibrium. Bot
Gravitational lensing allows to quantify the angular distribution of the convergence field around clusters of galaxies to constrain their connectivity to the cosmic web. We describe in this paper the corresponding theory in Lagrangian space where ana
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical compl