ﻻ يوجد ملخص باللغة العربية
Vignetting is an inherited imaging phenomenon within almost all optical systems, showing as a radial intensity darkening toward the corners of an image. Since it is a common effect for photography and usually appears as a slight intensity variation, people usually regard it as a part of a photo and would not even want to post-process it. Due to this natural advantage, in this work, we study vignetting from a new viewpoint, i.e., adversarial vignetting attack (AVA), which aims to embed intentionally misleading information into vignetting and produce a natural adversarial example without noise patterns. This example can fool the state-of-the-art deep convolutional neural networks (CNNs) but is imperceptible to humans. To this end, we first propose the radial-isotropic adversarial vignetting attack (RI-AVA) based on the physical model of vignetting, where the physical parameters (e.g., illumination factor and focal length) are tuned through the guidance of target CNN models. To achieve higher transferability across different CNNs, we further propose radial-anisotropic adversarial vignetting attack (RA-AVA) by allowing the effective regions of vignetting to be radial-anisotropic and shape-free. Moreover, we propose the geometry-aware level-set optimization method to solve the adversarial vignetting regions and physical parameters jointly. We validate the proposed methods on three popular datasets, i.e., DEV, CIFAR10, and Tiny ImageNet, by attacking four CNNs, e.g., ResNet50, EfficientNet-B0, DenseNet121, and MobileNet-V2, demonstrating the advantages of our methods over baseline methods on both transferability and image quality.
Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack m
Deep face recognition (FR) has achieved significantly high accuracy on several challenging datasets and fosters successful real-world applications, even showing high robustness to the illumination variation that is usually regarded as a main threat t
Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage an
Deep neural networks have been widely used in many computer vision tasks. However, it is proved that they are susceptible to small, imperceptible perturbations added to the input. Inputs with elaborately designed perturbations that can fool deep lear
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object.