ترغب بنشر مسار تعليمي؟ اضغط هنا

AVA: Adversarial Vignetting Attack against Visual Recognition

92   0   0.0 ( 0 )
 نشر من قبل Qing Guo
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Vignetting is an inherited imaging phenomenon within almost all optical systems, showing as a radial intensity darkening toward the corners of an image. Since it is a common effect for photography and usually appears as a slight intensity variation, people usually regard it as a part of a photo and would not even want to post-process it. Due to this natural advantage, in this work, we study vignetting from a new viewpoint, i.e., adversarial vignetting attack (AVA), which aims to embed intentionally misleading information into vignetting and produce a natural adversarial example without noise patterns. This example can fool the state-of-the-art deep convolutional neural networks (CNNs) but is imperceptible to humans. To this end, we first propose the radial-isotropic adversarial vignetting attack (RI-AVA) based on the physical model of vignetting, where the physical parameters (e.g., illumination factor and focal length) are tuned through the guidance of target CNN models. To achieve higher transferability across different CNNs, we further propose radial-anisotropic adversarial vignetting attack (RA-AVA) by allowing the effective regions of vignetting to be radial-anisotropic and shape-free. Moreover, we propose the geometry-aware level-set optimization method to solve the adversarial vignetting regions and physical parameters jointly. We validate the proposed methods on three popular datasets, i.e., DEV, CIFAR10, and Tiny ImageNet, by attacking four CNNs, e.g., ResNet50, EfficientNet-B0, DenseNet121, and MobileNet-V2, demonstrating the advantages of our methods over baseline methods on both transferability and image quality.



قيم البحث

اقرأ أيضاً

Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack m ethods for texts usually adopt heuristic replacement strategies on the character or word level, which remains challenging to find the optimal solution in the massive space of possible combinations of replacements while preserving semantic consistency and language fluency. In this paper, we propose textbf{BERT-Attack}, a high-quality and effective method to generate adversarial samples using pre-trained masked language models exemplified by BERT. We turn BERT against its fine-tuned models and other deep neural models in downstream tasks so that we can successfully mislead the target models to predict incorrectly. Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage, while the generated adversarial samples are fluent and semantically preserved. Also, the cost of calculation is low, thus possible for large-scale generations. The code is available at https://github.com/LinyangLee/BERT-Attack.
161 - Ruijun Gao , Qing Guo , Qian Zhang 2021
Deep face recognition (FR) has achieved significantly high accuracy on several challenging datasets and fosters successful real-world applications, even showing high robustness to the illumination variation that is usually regarded as a main threat t o the FR system. However, in the real world, illumination variation caused by diverse lighting conditions cannot be fully covered by the limited face dataset. In this paper, we study the threat of lighting against FR from a new angle, i.e., adversarial attack, and identify a new task, i.e., adversarial relighting. Given a face image, adversarial relighting aims to produce a naturally relighted counterpart while fooling the state-of-the-art deep FR methods. To this end, we first propose the physical model-based adversarial relighting attack (ARA) denoted as albedo-quotient-based adversarial relighting attack (AQ-ARA). It generates natural adversarial light under the physical lighting model and guidance of FR systems and synthesizes adversarially relighted face images. Moreover, we propose the auto-predictive adversarial relighting attack (AP-ARA) by training an adversarial relighting network (ARNet) to automatically predict the adversarial light in a one-step manner according to different input faces, allowing efficiency-sensitive applications. More importantly, we propose to transfer the above digital attacks to physical ARA (Phy-ARA) through a precise relighting device, making the estimated adversarial lighting condition reproducible in the real world. We validate our methods on three state-of-the-art deep FR methods, i.e., FaceNet, ArcFace, and CosFace, on two public datasets. The extensive and insightful results demonstrate our work can generate realistic adversarial relighted face images fooling FR easily, revealing the threat of specific light directions and strengths.
85 - Chengjin Sun , Sizhe Chen , 2020
Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage an d transmission, however, the current autoencoders are easily attacked, i.e., one can slightly modify an input but has totally different codes. The vulnerability is rooted the sensitivity of the autoencoders and to enhance the robustness, we propose to adopt double backpropagation (DBP) to secure autoencoder such as VAE and DRAW. We restrict the gradient from the reconstruction image to the original one so that the autoencoder is not sensitive to trivial perturbation produced by the adversarial attack. After smoothing the gradient by DBP, we further smooth the label by Gaussian Mixture Model (GMM), aiming for accurate and robust classification. We demonstrate in MNIST, CelebA, SVHN that our method leads to a robust autoencoder resistant to attack and a robust classifier able for image transition and immune to adversarial attack if combined with GMM.
Deep neural networks have been widely used in many computer vision tasks. However, it is proved that they are susceptible to small, imperceptible perturbations added to the input. Inputs with elaborately designed perturbations that can fool deep lear ning models are called adversarial examples, and they have drawn great concerns about the safety of deep neural networks. Object detection algorithms are designed to locate and classify objects in images or videos and they are the core of many computer vision tasks, which have great research value and wide applications. In this paper, we focus on adversarial attack on some state-of-the-art object detection models. As a practical alternative, we use adversarial patches for the attack. Two adversarial patch generation algorithms have been proposed: the heatmap-based algorithm and the consensus-based algorithm. The experiment results have shown that the proposed methods are highly effective, transferable and generic. Additionally, we have applied the proposed methods to competition Adversarial Challenge on Object Detection that is organized by Alibaba on the Tianchi platform and won top 7 in 1701 teams. Code is available at: https://github.com/FenHua/DetDak
166 - Bowei Xi , Yujie Chen , Fan Fei 2021
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object. Instead of following the dominating attack strategy in the existing literature, i.e., to introduce minor perturbations to a digital input or a stationary physical object, we show two new successful attack strategies in this paper. We show by superimposing several patterns onto one physical object, a DNN becomes confused and picks one of the patterns to assign a class label. Our experiment with three flapping wing robots demonstrates the possibility of developing an adversarial camouflage to cause a targeted mistake by DNN. We also show certain motion can reduce the dependency among consecutive frames in a video and make an object detector blind, i.e., not able to detect an object exists in the video. Hence in a successful physical attack against DNN, targeted motion against the system should also be considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا