ترغب بنشر مسار تعليمي؟ اضغط هنا

On Parameter Optimization and Reach Enhancement for the Improved Soft-Aided Staircase Decoder

61   0   0.0 ( 0 )
 نشر من قبل Bin Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The so-called improved soft-aided bit-marking algorithm was recently proposed for staircase codes (SCCs) in the context of fiber optical communications. This algorithm is known as iSABM-SCC. With the help of channel soft information, the iSABM-SCC decoder marks bits via thresholds to deal with both miscorrections and failures of hard-decision (HD) decoding. In this paper, we study iSABM-SCC focusing on the parameter optimization of the algorithm and its performance analysis, in terms of the gap to the achievable information rates (AIRs) of HD codes and the fiber reach enhancement. We show in this paper that the marking thresholds and the number of modified component decodings heavily affect the performance of iSABM-SCC, and thus, they need to be carefully optimized. By replacing standard decoding with the optimized iSABM-SCC decoding, the gap to the AIRs of HD codes can be reduced to 0.26-1.02 dB for code rates of 0.74-0.87 in the additive white Gaussian noise channel with 8-ary pulse amplitude modulation. The obtained reach increase is up to 22% for data rates between 401 Gbps and 468 Gbps in an optical fiber channel.



قيم البحث

اقرأ أيضاً

We introduce a novel soft-aided hard-decision decoder for product codes adopting bit marking via updated reliabilities at each decoding iteration. Gains up to 0.8 dB vs. standard iterative bounded distance decoding and up to 0.3 dB vs. our previously proposed bit-marking decoder are demonstrated.
165 - Hong Shen , Wei Xu , Shulei Gong 2020
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking int o account the impact of hardware impairments, where the source transmit beamforming and the IRS reflect beamforming are jointly designed under the proposed optimization framework. To circumvent the non-convexity of the formulated design problem, we first derive a closed-form optimal solution to the source transmit beamforming. Then, for the optimization of IRS reflect beamforming, we obtain an upper bound to the optimal objective value via solving a single convex problem. A low-complexity minorization-maximization (MM) algorithm was developed to approach the upper bound. Simulation results demonstrate that the proposed beamforming design is more robust to the hardware impairments than that of the conventional SNR maximized scheme. Moreover, compared to the scenario without deploying an IRS, the performance gain brought by incorporating the hardware impairments is more evident for the IRS-aided communications.
The performance of a device-to-device (D2D) underlay communication system is limited by the co-channel interference between cellular users (CUs) and D2D devices. To address this challenge, an intelligent reflecting surface (IRS) aided D2D underlay sy stem is studied in this paper. A two-timescale optimization scheme is proposed to reduce the required channel training and feedback overhead, where transmit beamforming at the base station (BS) and power control at the D2D transmitter are adapted to instantaneous effective channel state information (CSI); and the IRS phase shifts are adapted to slow-varying channel mean. Based on the two-timescale optimization scheme, we aim to maximize the D2D ergodic rate subject to a given outage probability constrained signal-to-interference-plus-noise ratio (SINR) target for the CU. The two-timescale problem is decoupled into two sub-problems, and the two sub-problems are solved iteratively with closed-form expressions. Numerical results verify that the two-timescale based optimization performs better than several baselines, and also demonstrate a favorable trade-off between system performance and CSI overhead.
Reconfigurable intelligent surface (RIS)-aided networks have been investigated for the purpose of improving the system performance. However, the introduced unit modulus phase shifts and coupling characteristic bring enormous challenges to the optimiz ation in the RIS-aided networks. Many efforts have been made to jointly optimize phase shift vector and other parameters. This article intends to survey the latest research results about the optimization in RIS-aided networks. A taxonomy is devised to categorize the existing literatures based on optimization types, phase shift form, and decoupling methods. Furthermore, in alternating optimization framework, we introduce in detail how to exploit the aforementioned technologies flexibly. It is known that most works could not guarantee a stationary point. To overcome this problem, we propose a unified framework for the optimization problem of RIS-aided networks with continuous phase shifts to find a stationary point. Finally, key challenges are outlined to provide guidelines for the domain researchers and designers to explore more efficient optimization frameworks, and then open issues are discussed.
316 - Ming-Min Zhao , An Liu , Yubo Wan 2020
Intelligent reflecting surface (IRS) is an emerging technology that is able to reconfigure the wireless channel via tunable passive signal reflection and thereby enhance the spectral and energy efficiency of wireless networks cost-effectively. In thi s paper, we study an IRS-aided multiuser multiple-input single-output (MISO) wireless system and adopt the two-timescale (TTS) transmission to reduce the signal processing complexity and channel training overhead as compared to the existing schemes based on the instantaneous channel state information (I-CSI), and at the same time, exploit the multiuser channel diversity in transmission scheduling. Specifically, the long-term passive beamforming is designed based on the statistical CSI (S-CSI) of all links, while the short-term active beamforming is designed to cater to the I-CSI of all users reconfigured channels with optimized IRS phase shifts. We aim to minimize the average transmit power at the access point (AP), subject to the users individual quality of service (QoS) constraints. The formulated stochastic optimization problem is non-convex and difficult to solve since the long-term and short-term design variables are complicatedly coupled in the QoS constraints. To tackle this problem, we propose an efficient algorithm, called the primal-dual decomposition based TTS joint active and passive beamforming (PDD-TJAPB), where the original problem is decomposed into a long-term problem and a family of short-term problems, and the deep unfolding technique is employed to extract gradient information from the short-term problems to construct a convex surrogate problem for the long-term problem. The proposed algorithm is proved to converge to a stationary solution of the original problem almost surely. Simulation results are presented which demonstrate the advantages and effectiveness of the proposed algorithm as compared to benchmark schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا