ﻻ يوجد ملخص باللغة العربية
Generating high-fidelity, tunable entanglement between qubits is crucial for realizing gate-based quantum computation. In superconducting circuits, tunable interactions are often implemented using flux-tunable qubits or coupling elements, adding control complexity and noise sources. Here, we realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling, induced by driving both transmons off-resonantly. We show tunable coupling over one order of magnitude larger than the static coupling, and change the sign of the interaction, enabling cancellation of the idle coupling. Further, this interaction is amenable to large quantum processors: the drive frequency can be flexibly chosen to avoid spurious transitions, and because both transmons are driven, it is resilient to microwave crosstalk. We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking, and we find the fidelity is limited by incoherent errors.
We introduce a new entangling gate between two fixed-frequency qubits statically coupled via a microwave resonator bus which combines the following desirable qualities: all-microwave control, appreciable qubit separation for reduction of crosstalk an
Large scale quantum computers will consist of many interacting qubits. In this paper we expand the two flux qubit coupling scheme first devised in [Phys. Rev. B {bf 70}, 140501 (2004)] and realized in [Science {bf 314}, 1427 (2006)] to a three-qubit,
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coup
For a variety of superconducting qubits, tunable interactions are achieved through mutual inductive coupling to a coupler circuit containing a nonlinear Josephson element. In this paper we derive the general interaction mediated by such a circuit und
Over the past two decades, the performance of superconducting quantum circuits has tremendously improved. The progress of superconducting qubits enabled a new industry branch to emerge from global technology enterprises to quantum computing startups.