ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure of YbFe$_4$Al$_8$ antiferromagnet: A combined X-ray photoelectron spectroscopy and first-principles study

70   0   0.0 ( 0 )
 نشر من قبل Miroslaw Werwinski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Depending on their chemical composition, Yb compounds often exhibit different valence states. Here we investigate the valence state of YbFe$_4$Al$_8$ using X-ray photoelectron spectroscopy (XPS) and first-principles calculaions. The XPS valence band of YbFe$_4$Al$_8$ consists of two contributions coming from divalent (Yb$^{2+}$) and trivalent (Yb$^{3+}$) configurations. The determined value of the valence at room temperature is 2.81. Divalent and trivalent contributions are also observed for core-level Yb 4$d$ XPS spectra. We study several collinear antiferromagnetic models of YbFe$_4$Al$_8$ from the first-principles and for comparison we also consider LuFe$_4$Al$_8$ with a fully filled 4$f$ shell. We predict that only Fe sublattices of YbFe$_4$Al$_8$ carry significant magnetic moments and that the most stable magnetic configuration is AFM-C with antiparallel columns of magnetic moments. We also present a Mullliken electronic population analysis describing charge transfer both within and between atoms. In addition, we also study the effect of intra-atomic Coulomb U repulsion term applied for 4$f$ orbitals on Yb valence and Fe magnetic moments.



قيم البحث

اقرأ أيضاً

We have carried out bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) measurements on in-situ cleaved and ex-situ polished SmB6 single crystals. Using the multiplet-structure in the Sm 3d core level spectra, we determined reliably that th e valence of Sm in bulk SmB6 is close to 2.55 at ~5 K. Temperature dependent measurements revealed that the Sm valence gradually increases to 2.64 at 300 K. From a detailed line shape analysis we can clearly observe that not only the J=0 but also the J=1 state of the Sm 4f 6 configuration becomes occupied at elevated temperatures. Making use of the polarization dependence, we were able to identify and extract the Sm 4f spectral weight of the bulk material. Finally, we revealed that the oxidized or chemically damaged surface region of the ex-situ polished SmB6 single crystal is surprisingly thin, about 1 nm only.
Chemical interaction and changes in local electronic structure of Cr, Fe, Co, Ni and Cu transition metals (TMs) upon formation of an $Al_{8}Co_{17}Cr_{17}Cu_{8}Fe_{17}Ni_{33}$ compositionally complex alloy (CCA) have been studied by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. It was found that upon CCA formation, occupancy of the Cr, Co and Ni 3d states changes and the maximum of the occupied and empty Ni 3d states density shifts away from Fermi level ($E_f$) by 0.5 and 0.6 eV, respectively, whereas the Cr 3d empty states maximum shifts towards $E_f$ by 0.3 eV, compared to the corresponding pure metals. The absence of significant charge transfer between the elements was established, pointing to the balancing of the 3d states occupancy change by involvement of delocalized 4s and 4p states into the charge redistribution. Despite the expected formation of strong Al-TMs covalent bonds, the Al role in the transformation of the TMs 3d electronic states is negligible. The work demonstrates a decisive role of Cr in the Ni local electronic structure transformation and suggests formation of directional Ni-Cr bonds with covalent character. These findings can be helpful for tuning deformation properties and phase stability of the CCA.
GaTa$_4$Se$_8$ belongs to the lacunar spinel family. Its crystal structures is still a puzzle though there have been intensive studies on its novel properties, such as the Mott insulator phase and superconductivity under pressure. In this work, we in vestigate its phonon spectra through first-principle calculations and proposed it most probably has crystal structure phase transition, which is consistent with several experimental observations. For the prototype lacunar spinel with cubic symmetry of space group $Fbar{4}3m$, its phonon spectra have three soft modes in the whole Brillouin zone, indicating the strong dynamical instability of such crystal structure. In order to find the dynamically stable crystal structure, further calculations indicate two new structures of GaTa$_4$Se$_8$, corresponding to $R3m$ and $Pbar{4}2_{1}m$, verifying that at the ambient pressure, there does exist structure phase transition of GaTa$_4$Se$_8$ from $Fbar{4}3m$ to other structures when the temperature is lowered. We also performed electronic structure calculation for $R3m$ and $Pbar{4}2_{1}m$ structure, showing that $Pbar{4}2_{1}m$ structure GaTa$_4$Se$_8$ is band insulator, and obtained Mott insulator state for $R3m$ structure by DMFT calculation under single-band Hubbard model picture when interaction parameter U is larger than 0.40 eV vs. band width of 0.25 eV. It is reasonable to assume that while lowering the temperature, $Fbar{4}3m$ structure GaTa$_4$Se$_8$ becomes $R3m$ structure GaTa$_4$Se$_8$ first, then $Pbar{4}2_{1}m$ structure GaTa$_4$Se$_8$, because of the symmetry of $Pbar{4}2_{1}m$ is lower than $R3m$ after Jahn-Teller distortion. The structure transition may explain the magnetic susceptibility anomalous at low temperature.
Alanates and boranates are studied intensively because of their potential use as hydrogen storage materials. In this paper we present a first-principles study of the electronic structure and the energetics of beryllium boranate, Be(BH4)2. From total energy calculations we show that - in contrast to the other boranates and alanates - hydrogen desorption directly to the elements is likely, and is at least competitive with desorption to the elemental hydride (BeH2). The formation enthalpy of Be(BH4)2 is only -0.12 eV/H2 (at T=0K). This low value can be rationalized by the participation of all atoms in the covalent bonding, in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature we estimate a decomposition temperature of 162 K at a pressure of 1 bar.
428 - J. J. Kas , J. J. Rehr , 2021
The treatment of electronic correlations in open-shell systems is among the most challenging problems of condensed matter theory. Current approximations are only partly successful. Ligand field multiplet theory (LFMT) has been widely successful in de scribing intra-atomic correlation effects in x-ray spectra, but typically ignores itinerant states. The cumulant expansion for the one electron Greens function successfully describes shake-up effects but ignores atomic multiplets. More complete methods are computationally problematic. Here we show that separating the dynamic Coulomb interactions into local and longer-range parts yields an efficient, nearly ab initio multiplet + cumulant approach that accounts for both local atomic multiplet-splittings and charge-transfer shake-up satellites. An application to {alpha}-Fe 2 O 3 (hematite) yields very good agreement with XPS experiment, including the broad 9 eV satellites and distributed background features missing from previous approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا