ترغب بنشر مسار تعليمي؟ اضغط هنا

Task-Related Self-Supervised Learning for Remote Sensing Image Change Detection

201   0   0.0 ( 0 )
 نشر من قبل Zhiyu Jiang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Change detection for remote sensing images is widely applied for urban change detection, disaster assessment and other fields. However, most of the existing CNN-based change detection methods still suffer from the problem of inadequate pseudo-changes suppression and insufficient feature representation. In this work, an unsupervised change detection method based on Task-related Self-supervised Learning Change Detection network with smooth mechanism(TSLCD) is proposed to eliminate it. The main contributions include: (1) the task-related self-supervised learning module is introduced to extract spatial features more effectively. (2) a hard-sample-mining loss function is applied to pay more attention to the hard-to-classify samples. (3) a smooth mechanism is utilized to remove some of pseudo-changes and noise. Experiments on four remote sensing change detection datasets reveal that the proposed TSLCD method achieves the state-of-the-art for change detection task.

قيم البحث

اقرأ أيضاً

The vast amount of unlabeled multi-temporal and multi-sensor remote sensing data acquired by the many Earth Observation satellites present a challenge for change detection. Recently, many generative model-based methods have been proposed for remote s ensing image change detection on such unlabeled data. However, the high diversities in the learned features weaken the discrimination of the relevant change indicators in unsupervised change detection tasks. Moreover, these methods lack research on massive archived images. In this work, a self-supervised change detection approach based on an unlabeled multi-view setting is proposed to overcome this limitation. This is achieved by the use of a multi-view contrastive loss and an implicit contrastive strategy in the feature alignment between multi-view images. In this approach, a pseudo-Siamese network is trained to regress the output between its two branches pre-trained in a contrastive way on a large dataset of multi-temporal homogeneous or heterogeneous image patches. Finally, the feature distance between the outputs of the two branches is used to define a change measure, which can be analyzed by thresholding to get the final binary change map. Experiments are carried out on five homogeneous and heterogeneous remote sensing image datasets. The proposed SSL approach is compared with other supervised and unsupervised state-of-the-art change detection methods. Results demonstrate both improvements over state-of-the-art unsupervised methods and that the proposed SSL approach narrows the gap between unsupervised and supervised change detection.
Archetypal scenarios for change detection generally consider two images acquired through sensors of the same modality. However, in some specific cases such as emergency situations, the only images available may be those acquired through sensors of di fferent modalities. This paper addresses the problem of unsupervisedly detecting changes between two observed images acquired by sensors of different modalities with possibly different resolutions. These sensor dissimilarities introduce additional issues in the context of operational change detection that are not addressed by most of the classical methods. This paper introduces a novel framework to effectively exploit the available information by modelling the two observed images as a sparse linear combination of atoms belonging to a pair of coupled overcomplete dictionaries learnt from each observed image. As they cover the same geographical location, codes are expected to be globally similar, except for possible changes in sparse spatial locations. Thus, the change detection task is envisioned through a dual code estimation which enforces spatial sparsity in the difference between the estimated codes associated with each image. This problem is formulated as an inverse problem which is iteratively solved using an efficient proximal alternating minimization algorithm accounting for nonsmooth and nonconvex functions. The proposed method is applied to real images with simulated yet realistic and real changes. A comparison with state-of-the-art change detection methods evidences the accuracy of the proposed strategy.
Many current deep learning approaches make extensive use of backbone networks pre-trained on large datasets like ImageNet, which are then fine-tuned to perform a certain task. In remote sensing, the lack of comparable large annotated datasets and the wide diversity of sensing platforms impedes similar developments. In order to contribute towards the availability of pre-trained backbone networks in remote sensing, we devise a self-supervised approach for pre-training deep neural networks. By exploiting the correspondence between geo-tagged audio recordings and remote sensing imagery, this is done in a completely label-free manner, eliminating the need for laborious manual annotation. For this purpose, we introduce the SoundingEarth dataset, which consists of co-located aerial imagery and audio samples all around the world. Using this dataset, we then pre-train ResNet models to map samples from both modalities into a common embedding space, which encourages the models to understand key properties of a scene that influence both visual and auditory appearance. To validate the usefulness of the proposed approach, we evaluate the transfer learning performance of pre-trained weights obtained against weights obtained through other means. By fine-tuning the models on a number of commonly used remote sensing datasets, we show that our approach outperforms existing pre-training strategies for remote sensing imagery. The dataset, code and pre-trained model weights will be available at https://github.com/khdlr/SoundingEarth.
Longitudinal imaging forms an essential component in the management and follow-up of many medical conditions. The presence of lesion changes on serial imaging can have significant impact on clinical decision making, highlighting the important role fo r automated change detection. Lesion changes can represent anomalies in serial imaging, which implies a limited availability of annotations and a wide variety of possible changes that need to be considered. Hence, we introduce a new unsupervised anomaly detection and localisation method trained exclusively with serial images that do not contain any lesion changes. Our training automatically synthesises lesion changes in serial images, introducing detection and localisation pseudo-labels that are used to self-supervise the training of our model. Given the rarity of these lesion changes in the synthesised images, we train the model with the imbalance robust focal Tversky loss. When compared to supervised models trained on different datasets, our method shows competitive performance in the detection and localisation of new demyelinating lesions on longitudinal magnetic resonance imaging in multiple sclerosis patients. Code for the models will be made available on GitHub.
For high spatial resolution (HSR) remote sensing images, bitemporal supervised learning always dominates change detection using many pairwise labeled bitemporal images. However, it is very expensive and time-consuming to pairwise label large-scale bi temporal HSR remote sensing images. In this paper, we propose single-temporal supervised learning (STAR) for change detection from a new perspective of exploiting object changes in unpaired images as supervisory signals. STAR enables us to train a high-accuracy change detector only using textbf{unpaired} labeled images and generalize to real-world bitemporal images. To evaluate the effectiveness of STAR, we design a simple yet effective change detector called ChangeStar, which can reuse any deep semantic segmentation architecture by the ChangeMixin module. The comprehensive experimental results show that ChangeStar outperforms the baseline with a large margin under single-temporal supervision and achieves superior performance under bitemporal supervision. Code is available at https://github.com/Z-Zheng/ChangeStar
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا