ﻻ يوجد ملخص باللغة العربية
A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC 2018, FOCS 2018) has given approximate near neighbour search (NNS) data structures for a wide class of distance metrics, including all norms. In particular, these data structures achieve approximation on the order of $p$ for $ell_p^d$ norms with space complexity nearly linear in the dataset size $n$ and polynomial in the dimension $d$, and query time sub-linear in $n$ and polynomial in $d$. The main shortcoming is the exponential in $d$ pre-processing time required for their construction. In this paper, we describe a more direct framework for constructing NNS data structures for general norms. More specifically, we show via an algorithmic reduction that an efficient NNS data structure for a given metric is implied by an efficient average distortion embedding of it into $ell_1$ or into Euclidean space. In particular, the resulting data structures require only polynomial pre-processing time, as long as the embedding can be computed in polynomial time. As a concrete instantiation of this framework, we give an NNS data structure for $ell_p$ with efficient pre-processing that matches the approximation factor, space and query complexity of the aforementioned data structure of Andoni et al. On the way, we resolve a question of Naor (Analysis and Geometry in Metric Spaces, 2014) and provide an explicit, efficiently computable embedding of $ell_p$, for $p ge 2$, into $ell_2$ with (quadratic) average distortion on the order of $p$. We expect our approach to pave the way for constructing efficient NNS data structures for all norms.
We present a new algorithm for the approximate near neighbor problem that combines classical ideas from group testing with locality-sensitive hashing (LSH). We reduce the near neighbor search problem to a group testing problem by designating neighbor
Graph search is one of the most successful algorithmic trends in near neighbor search. Several of the most popular and empirically successful algorithms are, at their core, a simple walk along a pruned near neighbor graph. Such algorithms consistentl
Embedding into hyperbolic space is emerging as an effective representation technique for datasets that exhibit hierarchical structure. This development motivates the need for algorithms that are able to effectively extract knowledge and insights from
We prove an $Omega(d lg n/ (lglg n)^2)$ lower bound on the dynamic cell-probe complexity of statistically $mathit{oblivious}$ approximate-near-neighbor search ($mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = Thet
Approximate nearest neighbor algorithms are used to speed up nearest neighbor search in a wide array of applications. However, current indexing methods feature several hyperparameters that need to be tuned to reach an acceptable accuracy--speed trade