ترغب بنشر مسار تعليمي؟ اضغط هنا

R2D2: Relational Text Decoding with Transformers

99   0   0.0 ( 0 )
 نشر من قبل Aryan Arbabi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel framework for modeling the interaction between graphical structures and the natural language text associated with their nodes and edges. Existing approaches typically fall into two categories. On group ignores the relational structure by converting them into linear sequences and then utilize the highly successful Seq2Seq models. The other side ignores the sequential nature of the text by representing them as fixed-dimensional vectors and apply graph neural networks. Both simplifications lead to information loss. Our proposed method utilizes both the graphical structure as well as the sequential nature of the texts. The input to our model is a set of text segments associated with the nodes and edges of the graph, which are then processed with a transformer encoder-decoder model, equipped with a self-attention mechanism that is aware of the graphical relations between the nodes containing the segments. This also allows us to use BERT-like models that are already trained on large amounts of text. While the proposed model has wide applications, we demonstrate its capabilities on data-to-text generation tasks. Our approach compares favorably against state-of-the-art methods in four tasks without tailoring the model architecture. We also provide an early demonstration in a novel practical application -- generating clinical notes from the medical entities mentioned during clinical visits.



قيم البحث

اقرأ أيضاً

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the pr oblem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.
Representations from large pretrained models such as BERT encode a range of features into monolithic vectors, affording strong predictive accuracy across a multitude of downstream tasks. In this paper we explore whether it is possible to learn disent angled representations by identifying existing subnetworks within pretrained models that encode distinct, complementary aspect representations. Concretely, we learn binary masks over transformer weights or hidden units to uncover subsets of features that correlate with a specific factor of variation; this eliminates the need to train a disentangled model from scratch for a particular task. We evaluate this method with respect to its ability to disentangle representations of sentiment from genre in movie reviews, toxicity from dialect in Tweets, and syntax from semantics. By combining masking with magnitude pruning we find that we can identify sparse subnetworks within BERT that strongly encode particular aspects (e.g., toxicity) while only weakly encoding others (e.g., race). Moreover, despite only learning masks, we find that disentanglement-via-masking performs as well as -- and often better than -- previously proposed methods based on variational autoencoders and adversarial training.
We propose the first general-purpose gradient-based attack against transformer models. Instead of searching for a single adversarial example, we search for a distribution of adversarial examples parameterized by a continuous-valued matrix, hence enab ling gradient-based optimization. We empirically demonstrate that our white-box attack attains state-of-the-art attack performance on a variety of natural language tasks. Furthermore, we show that a powerful black-box transfer attack, enabled by sampling from the adversarial distribution, matches or exceeds existing methods, while only requiring hard-label outputs.
Speech-to-text translation (ST), which directly translates the source language speech to the target language text, has attracted intensive attention recently. However, the combination of speech recognition and machine translation in a single model po ses a heavy burden on the direct cross-modal cross-lingual mapping. To reduce the learning difficulty, we propose COnSecutive Transcription and Translation (COSTT), an integral approach for speech-to-text translation. The key idea is to generate source transcript and target translation text with a single decoder. It benefits the model training so that additional large parallel text corpus can be fully exploited to enhance the speech translation training. Our method is verified on three mainstream datasets, including Augmented LibriSpeech English-French dataset, TED English-German dataset, and TED English-Chinese dataset. Experiments show that our proposed COSTT outperforms the previous state-of-the-art methods. The code is available at https://github.com/dqqcasia/st.
Speech-to-text translation (ST), which translates source language speech into target language text, has attracted intensive attention in recent years. Compared to the traditional pipeline system, the end-to-end ST model has potential benefits of lowe r latency, smaller model size, and less error propagation. However, it is notoriously difficult to implement such a model without transcriptions as intermediate. Existing works generally apply multi-task learning to improve translation quality by jointly training end-to-end ST along with automatic speech recognition (ASR). However, different tasks in this method cannot utilize information from each other, which limits the improvement. Other works propose a two-stage model where the second model can use the hidden state from the first one, but its cascade manner greatly affects the efficiency of training and inference process. In this paper, we propose a novel interactive attention mechanism which enables ASR and ST to perform synchronously and interactively in a single model. Specifically, the generation of transcriptions and translations not only relies on its previous outputs but also the outputs predicted in the other task. Experiments on TED speech translation corpora have shown that our proposed model can outperform strong baselines on the quality of speech translation and achieve better speech recognition performances as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا