ترغب بنشر مسار تعليمي؟ اضغط هنا

The snapshot distance method: estimating the distance to a Type Ia supernova from minimal observations

277   0   0.0 ( 0 )
 نشر من قبل Benjamin Stahl
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the snapshot distance method (SDM), a modern incarnation of a proposed technique for estimating the distance to a Type Ia supernova (SN Ia) from minimal observations. Our method, which has become possible owing to recent work in the application of deep learning to SN Ia spectra (we use the deepSIP package), allows us to estimate the distance to an SN Ia from a single optical spectrum and epoch of $2+$ passband photometry -- one nights worth of observations (though contemporaneity is not a requirement). Using a compilation of well-observed SNe Ia, we generate snapshot distances across a wide range of spectral and photometric phases, light-curve shapes, photometric passband combinations, and spectrum signal-to-noise ratios. By comparing these estimates to the corresponding distances derived from fitting all available photometry for each object, we demonstrate that our method is robust to the relative temporal sampling of the provided spectroscopic and photometric information, and to a broad range of light-curve shapes that lie within the domain of standard width-luminosity relations. Indeed, the median residual (and asymmetric scatter) between SDM distances derived from two-passband photometry and conventional light-curve-derived distances that utilise all available photometry is $0.013_{-0.143}^{+0.154}$ mag. Moreover, we find that the time of maximum brightness and light-curve shape (both of which are spectroscopically derived in our method) are only minimally responsible for the observed scatter. In a companion paper, we apply the SDM to a large number of sparsely observed SNe Ia as part of a cosmological study.

قيم البحث

اقرأ أيضاً

We describe catalog-level simulations of Type Ia supernova (SN~Ia) light curves in the Dark Energy Survey Supernova Program (DES-SN), and in low-redshift samples from the Center for Astrophysics (CfA) and the Carnegie Supernova Project (CSP). These s imulations are used to model biases from selection effects and light curve analysis, and to determine bias corrections for SN~Ia distance moduli that are used to measure cosmological parameters. To generate realistic light curves, the simulation uses a detailed SN~Ia model, incorporates information from observations (PSF, sky noise, zero point), and uses summary information (e.g., detection efficiency vs. signal to noise ratio) based on 10,000 fake SN light curves whose fluxes were overlaid on images and processed with our analysis pipelines. The quality of the simulation is illustrated by predicting distributions observed in the data. Averaging within redshift bins, we find distance modulus biases up to 0.05~mag over the redshift ranges of the low-z and DES-SN samples. For individual events, particularly those with extreme red or blue color, distance biases can reach 0.4~mag. Therefore, accurately determining bias corrections is critical for precision measurements of cosmological parameters. Files used to make these corrections are available at https://des.ncsa.illinois.edu/releases/sn.
On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or Assassin) discovered ASASSN-14lp just $sim2$ days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ($V = 1 1.94$ mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ($Delta m_{15}(B) = 0.80 pm 0.05$), a $B$-band maximum at $2457015.82 pm 0.03$, a rise time of $16.94^{+ 0.11 }_{- 0.10 }$ days, and moderate host--galaxy extinction ($E(B-V)_{textrm{host}} = 0.33 pm 0.06$). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of $mu = 30.8 pm 0.2$ corresponding to a distance of $14.7 pm 1.5$ Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any non-degenerate companion larger than $0.34 R_{textrm{sun}}$.
74 - X. Huang , Z. Raha , G. Aldering 2017
Correction of Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is bas ed on multi-epoch, spectrophotometric observations spanning 3,300 - 9,200 {AA}, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV , RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands, and compare the 5780 {AA} band with the dust-to-band ratio for the Milky Way. Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the Milky Way. Furthermore we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al. (1989), ODonnell (1994), and Fitzpatrick (1999), and find the predictions of Fitzpatrick (1999) fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6$pm$1.1 Mpc. We compare this result with distance measurements in the literature.
84 - J. Polshaw 2015
The fortuitous occurrence of a type II-Plateau (IIP) supernova, SN 2014bc, in a galaxy for which distance estimates from a number of primary distance indicators are available provides a means with which to cross-calibrate the standardised candle meth od (SCM) for type IIP SNe. By applying calibrations from the literature we find distance estimates in line with the most precise measurement to NGC 4258 based on the Keplerian motion of masers (7.6$pm$0.23,Mpc), albeit with significant scatter. We provide an alternative local SCM calibration by only considering type IIP SNe that have occurred in galaxies for which a Cepheid distance estimate is available. We find a considerable reduction in scatter ($sigma_I = 0.16$, mag.), but note that the current sample size is limited. Applying this calibration, we estimate a distance to NGC 4258 of $7.08pm0.86$ Mpc.
In the next decade, transient searches from the Vera C. Rubin Observatory and the Nancy Grace Roman Space Telescope will increase the sample of known Type Ia Supernovae (SN Ia) from $sim10^3$ to $10^5$. With this reduction of statistical uncertaintie s on cosmological measurements, new methods are needed to reduce systematic uncertainties. Characterizing the underlying spectroscopic evolution of SN Ia remains a major systematic uncertainty in current cosmological analyses, motivating a new simulation tool for the next era of SN Ia cosmology: Build Your Own Spectral Energy Distribution (BYOSED). BYOSED is used within the SNANA framework to simulate light curves by applying spectral variations to model SEDs, enabling flexible testing of possible systematic shifts in SN Ia distance measurements. We test the framework by comparing a nominal Roman SN Ia survey simulation using a baseline SED model to simulations using SEDs perturbed with BYOSED, and investigate the impact of neglecting specific SED features in the analysis. These features include semi-empirical models of two possible, predicted relationships: between SN ejecta velocity and light curve observables, and a redshift-dependent relationship between SN Hubble residuals and host galaxy mass. We analyze each BYOSED simulation using the SALT2 & BBC framework, and estimate changes in the measured value of the dark energy equation-of-state parameter, $w$. We find a difference of $Delta w=-0.023$ for SN velocity and $Delta w=0.021$ for redshift-evolving host mass when compared to simulations without these features. By using BYOSED for SN Ia cosmology simulations, future analyses (e.g., Rubin and Roman SN Ia samples) will have greater flexibility to constrain or reduce such SN Ia modeling uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا