ترغب بنشر مسار تعليمي؟ اضغط هنا

Warm-up spectroscopy of quadrupole-split nuclear spins in n-GaAs epitaxial layers

60   0   0.0 ( 0 )
 نشر من قبل Masha Vladimirova
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficiency of the adiabatic demagnetization of nuclear spin system (NSS) of a solid is limited, if quadrupole effects are present. Nevertheless, despite a considerable quadrupole interaction, recent experiments validated the thermodynamic description of the NSS in GaAs. This suggests that nuclear spin temperature can be used as the universal indicator of the NSS state in presence of external perturbations. We implement this idea by analyzing the modification of the NSS temperature in response to an oscillating magnetic field at various frequencies, an approach termed as the warm-up spectroscopy. It is tested in a n-GaAs sample where both mechanical strain and built-in electric field may contribute to the quadrupole splitting, yielding the parameters of electric field gradient tensors for 75As and both Ga isotopes, 69Ga and 71Ga.

قيم البحث

اقرأ أيضاً

Irradiating a semiconductor with circularly polarized light creates spin-polarized charge carriers. If the material contains atoms with non-zero nuclear spin, they interact with the electron spins via the hyperfine coupling. Here, we consider GaAs/Al GaAs quantum wells, where the conduction-band electron spins interact with three different types of nuclear spins. The hyperfine interaction drives a transfer of spin polarization to the nuclear spins, which therefore acquire a polarization that is comparable to that of the electron spins. In this paper, we analyze the dynamics of the optical pumping process in the presence of an external magnetic field while irradiating a single quantum well with a circularly polarized laser. We measure the time dependence of the photoluminescence polarization to monitor the buildup of the nuclear spin polarization and thus the average hyperfine interaction acting on the electron spins. We present a simple model that adequately describes the dynamics of this process and is in good agreement with the experimental data.
We exploit ferromagnetic imprinting to create complex laterally defined regions of nuclear spin polarization in lithographically patterned MnAs/GaAs epilayers grown by molecular beam epitaxy (MBE). A time-resolved Kerr rotation microscope with approx imately 1 micron spatial resolution uses electron spin precession to directly image the GaAs nuclear polarization. These measurements indicate that the polarization varies from a maximum under magnetic mesas to zero several microns from the mesa perimeter, resulting in large (10**4 T/m) effective field gradients. The results reveal a flexible scheme for lateral engineering of spin-dependent energy landscapes in the solid state.
We investigate the dynamically polarized nuclear-spin system in Fe/emph{n}-GaAs heterostructures using the response of the electron-spin system to nuclear magnetic resonance (NMR) in lateral spin-valve devices. The hyperfine interaction is known to a ct more strongly on donor-bound electron states than on those in the conduction band. We provide a quantitative model of the temperature dependence of the occupation of donor sites. With this model we calculate the ratios of the hyperfine and quadrupolar nuclear relaxation rates of each isotope. For all temperatures measured, quadrupolar relaxation limits the spatial extent of nuclear spin-polarization to within a Bohr radius of the donor sites and is directly responsible for the isotope dependence of the measured NMR signal amplitude. The hyperfine interaction is also responsible for the $2text{ kHz}$ Knight shift of the nuclear resonance frequency that is measured as a function of the electron spin accumulation. The Knight shift is shown to provide a measurement of the electron spin-polarization that agrees qualitatively with standard spin transport measurements.
We determine the effective total spin $J$ of local moments formed from acceptor states bound to Mn ions in GaAs by evaluating their magnetic Chern numbers. We find that when individual Mn atoms are close to the sample surface, the total spin changes from $J = 1$ to $J = 2$, due to quenching of the acceptor orbital moment. For Mn pairs in bulk, the total $J$ depends on the pair orientation in the GaAs lattice and on the separation between the Mn atoms. We point out that Berry curvature variation as a function of local moment orientation can profoundly influence the quantum spin dynamics of these magnetic entities.
We report interlayer tunneling measurements between very dilute two-dimensional GaAs hole layers. Surprisingly, the shape and temperature-dependence of the tunneling spectrum can be explained with a Fermi liquid-based tunneling model, but the peak am plitude is much larger than expected from the available hole band parameters. Data as a function of parallel magnetic field reveal additional anomalous features, including a recurrence of a zero-bias tunneling peak at very large fields. In a perpendicular magnetic field, we observe a robust and narrow tunneling peak at total filling factor $ u_T=1$, signaling the formation of a bilayer quantum Hall ferromagnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا