ترغب بنشر مسار تعليمي؟ اضغط هنا

The Shape and Scatter of The Galaxy Main Sequence for Massive Galaxies at Cosmic Noon

113   0   0.0 ( 0 )
 نشر من قبل Sydney Sherman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the main sequence for all galaxies and star-forming galaxies for a sample of 28,469 massive ($M_star ge 10^{11}$M$_odot$) galaxies at cosmic noon ($1.5 < z < 3.0$), uniformly selected from a 17.5 deg$^2$ area (0.33 Gpc$^3$ comoving volume at these redshifts). Our large sample allows for a novel approach to investigating the galaxy main sequence that has not been accessible to previous studies. We measure the main sequence in small mass bins in the SFR-M$_{star}$ plane without assuming a functional form for the main sequence. With a large sample of galaxies in each mass bin, we isolate star-forming galaxies by locating the transition between the star-forming and green valley populations in the SFR-M$_{star}$ plane. This approach eliminates the need for arbitrarily defined fixed cutoffs when isolating the star-forming galaxy population, which often biases measurements of the scatter around the star-forming galaxy main sequence. We find that the main sequence for all galaxies becomes increasingly flat towards present day at the high-mass end, while the star-forming galaxy main sequence does not. We attribute this difference to the increasing fraction of the collective green valley and quiescent galaxy population from $z=3.0$ to $z=1.5$. Additionally, we measure the total scatter around the star-forming galaxy main sequence and find that it is $sim0.5-1.0$ dex with little evolution as a function of mass or redshift. We discuss the implications that these results have for pinpointing the physical processes driving massive galaxy evolution.

قيم البحث

اقرأ أيضاً

We explore the buildup of quiescent galaxies using a sample of 28,469 massive ($M_star ge 10^{11}$M$_odot$) galaxies at redshifts $1.5<z<3.0$, drawn from a 17.5 deg$^2$ area (0.33 Gpc$^3$ comoving volume at these redshifts). This allows for a robust study of the quiescent fraction as a function of mass at $1.5<z<3.0$ with a sample $sim$40 times larger at log($M_{star}$/$rm M_{odot}$)$ge11.5$ than previous studies. We derive the quiescent fraction using three methods: specific star-formation rate, distance from the main sequence, and UVJ color-color selection. All three methods give similar values at $1.5<z<2.0$, however the results differ by up to a factor of two at $2.0<z<3.0$. At redshifts $1.5 < z < 3.0$ the quiescent fraction increases as a function of stellar mass. By $z=2$, only 3.3 Gyr after the Big Bang, the universe has quenched $sim$25% of $M_star = 10^{11}$M$_odot$ galaxies and $sim$45% of $M_star = 10^{12}$M$_odot$ galaxies. We discuss physical mechanisms across a range of epochs and environments that could explain our results. We compare our results with predictions from hydrodynamical simulations SIMBA and IllustrisTNG and semi-analytic models (SAMs) SAG, SAGE, and Galacticus. The quiescent fraction from IllustrisTNG is higher than our empirical result by a factor of $2-5$, while those from SIMBA and the three SAMs are lower by a factor of $1.5-10$ at $1.5<z<3.0$.
We investigate the relation between AGN and star formation (SF) activity at $0.5 < z < 3$ by analyzing 898 galaxies with X-ray luminous AGN ($L_X > 10^{44}$ erg s$^{-1}$) and a large comparison sample of $sim 320,000$ galaxies without X-ray luminous AGN. Our samples are selected from a large (11.8 deg$^2$) area in Stripe 82 that has multi-wavelength (X-ray to far-IR) data. The enormous comoving volume ($sim 0.3$ Gpc$^3$) at $0.5 < z < 3$ minimizes the effects of cosmic variance and captures a large number of massive galaxies ($sim 30,000$ galaxies with $M_* > 10^{11} M_{odot}$) and X-ray luminous AGN. While many galaxy studies discard AGN hosts, we fit the SED of galaxies with and without X-ray luminous AGN with Code Investigating GALaxy Emission (CIGALE) and include AGN emission templates. We find that without this inclusion, stellar masses and star formation rates (SFRs) in AGN host galaxies can be overestimated, on average, by factors of up to $sim 5$ and $sim 10$, respectively. The average SFR of galaxies with X-ray luminous AGN is higher by a factor of $sim 3$ to $10$ compared to galaxies without X-ray luminous AGN at fixed stellar mass and redshift, suggesting that high SFRs and high AGN X-ray luminosities may be fueled by common mechanisms. The vast majority ($> 95 %$) of galaxies with X-ray luminous AGN at $z=0.5-3$ do not show quenched SF: this suggests that if AGN feedback quenches SF, the associated quenching process takes a significant time to act and the quenched phase sets in after the highly luminous phases of AGN activity.
67 - A. Obreja 2014
Using cosmological galaxy simulations from the MaGICC project, we study the evolution of the stellar masses, star formation rates and gas phase abundances of star forming galaxies. We derive the stellar masses and star formation rates using observati onal relations based on spectral energy distributions by applying the new radiative transfer code GRASIL-3D to our simulated galaxies. The simulations match well the evolution of the stellar mass-halo mass relation, have a star forming main sequence that maintains a constant slope out to redshift z $sim$ 2, and populate projections of the stellar mass - star formation - metallicity plane, similar to observed star forming disc galaxies. We discuss small differences between these projections in observational data and in simulations, and the possible causes for the discrepancies. The light-weighted stellar masses are in good agreement with the simulation values, the differences between the two varying between 0.06 dex and 0.20 dex. We also find a good agreement between the star formation rate tracer and the true (time-averaged) simulation star formation rates. Regardless if we use mass- or light-weighted quantities, our simulations indicate that bursty star formation cycles can account for the scatter in the star forming main sequence.
The analytic equilibrium model for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR) and metallicity across the majority of cosmic tim e with a small number of parameters related to feedback. Here we aim to test this data-constrained model to quantify deviations from the mean relation between stellar mass and SFR, i.e. the star-forming galaxy main sequence (MS). We implement fluctuation in halo accretion rates parameterised from merger-based simulations, and quantify the intrinsic scatter introduced into the MS under the assumption that fluctuations in star formation follow baryonic inflow fluctuations. We predict the 1-sigma MS scatter to be ~ 0.2 - 0.25 dex over the stellar mass range 10^8 Mo to 10^11 Mo and a redshift range 0.5 < z < 3 for SFRs averaged over 100 Myr. The scatter increases modestly at z > 3, as well as by averaging over shorter timescales. The contribution from merger-induced star formation is generally small, around 5% today and 10 - 15% during the peak epoch of cosmic star formation. These results are generally consistent with available observations, suggesting that deviations from the MS primarily reflect stochasticity in the inflow rate owing to halo mergers.
We use a 27.6 deg$^2$ survey to measure the clustering of $gzK_s$-selected quiescent galaxies at $zsim1.6$, focusing on ultra-massive quiescent galaxies. We find that $zsim1.6$ Ultra-Massive Passively Evolving Galaxies (UMPEGs), which have $K_s(AB)<1 9.75$ (stellar masses of $M_{stars}$ $>sim 10^{11.4}M_{odot}$ and mean $<$$M_{stars}$$>$ = $10^{11.5}M_{odot}$), cluster more strongly than any other known galaxy population at high redshift. Comparing their correlation length, $r_0 = 29.77 pm 2.75$ $ h^{-1}$Mpc, with the clustering of dark matter halos in the Millennium XXL N-body simulation suggests that these $zsim1.6$ UMPEGs reside in dark matter halos of mass $M_{h}sim10^{14.1}h^{-1}M_{odot}$. Such very massive $zsim1.6$ halos are associated with the ancestors of $zsim0$ massive galaxy clusters such as the Virgo and Coma clusters. Given their extreme stellar masses and lack of companions with comparable mass, we surmise that these UMPEGs could be the already-quenched central massive galaxies of their (proto)clusters. We conclude that with only a modest amount of further growth in their stellar mass, $zsim1.6$ UMPEGs could be the progenitors of some of the massive central galaxies of present-day massive galaxy clusters observed to be already very massive and quiescent near the peak epoch of the cosmic star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا