ترغب بنشر مسار تعليمي؟ اضغط هنا

Shape optimization problems in control form

66   0   0.0 ( 0 )
 نشر من قبل Giuseppe Buttazzo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a shape optimization problem written in the optimal control form: the governing operator is the $p$-Laplacian in the Euclidean space $R^d$, the cost is of an integral type, and the control variable is the domain of the state equation. Conditions that guarantee the existence of an optimal domain will be discussed in various situations. It is proved that the optimal domains have a finite perimeter and, under some suitable assumptions, that they are open sets. A crucial difference is between the case $p>d$, where the existence occurs under very mild conditions, and the case $ple d$, where additional assumptions have to be made on the data.



قيم البحث

اقرأ أيضاً

We consider Cheeger-like shape optimization problems of the form $$minbig{|Omega|^alpha J(Omega) : Omegasubset Dbig}$$ where $D$ is a given bounded domain and $alpha$ is above the natural scaling. We show the existence of a solution and analyze as $J (Omega)$ the particular cases of the compliance functional $C(Omega)$ and of the first eigenvalue $lambda_1(Omega)$ of the Dirichlet Laplacian. We prove that optimal sets are open and we obtain some necessary conditions of optimality.
We present and study novel optimal control problems motivated by the search for photovoltaic materials with high power-conversion efficiency. The material must perform the first step: convert light (photons) into electronic excitations. We formulate various desirable properties of the excitations as mathematical control goals at the Kohn-Sham-DFT level of theory, with the control being given by the nuclear charge distribution. We prove that nuclear distributions exist which give rise to optimal HOMO-LUMO excitations, and present illustrative numerical simulations for 1D finite nanocrystals. We observe pronounced goal-dependent features such as large electron-hole separation, and a hierarchy of length scales: internal HOMO and LUMO wavelengths $<$ atomic spacings $<$ (irregular) fluctuations of the doping profiles $<$ system size.
In this paper, optimal actuator shape for nonlinear parabolic systems is discussed. The system under study is an abstract differential equation with a locally Lipschitz nonlinear part. A quadratic cost on the state and input of the system is consider ed. The existence of an optimal actuator shape has been established in the literature. This paper focuses on driving the optimality conditions for actuator shapes belonging to a Banach space. The application of the theory to the optimal actuator shape design for railway track model is considered.
We consider shape optimization problems for general integral functionals of the calculus of variations that may contain a boundary term. In particular, this class includes optimization problems governed by elliptic equations with a Robin condition on the free boundary. We show the existence of an optimal domain under rather general assumptions and we study the cases when the optimal domains are open sets and have a finite perimeter.
Optimal actuator design for a vibration control problem is calculated. The actuator shape is optimized according to the closed-loop performance of the resulting linear-quadratic regulator and a penalty on the actuator size. The optimal actuator shape is found by means of shape calculus and a topological derivative of the linear-quadratic regulator (LQR) performance index. An abstract framework is proposed based on the theory for infinite-dimensional optimization of both the actuator shape and the associated control problem. A numerical realization of the optimality condition is presented for the actuator shape using a level-set method for topological derivatives. A Numerical example illustrating the design of actuator for Euler-Bernoulli beam model is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا