ترغب بنشر مسار تعليمي؟ اضغط هنا

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

65   0   0.0 ( 0 )
 نشر من قبل Takekazu Ishida
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Samples were examined using a superconducting (Nb) neutron imaging system employing a delay-line technique which in previous studies was shown to have high spatial resolution. We found excellent correspondence between neutron transmission and scanning electron microscope (SEM) images of Gd islands with sizes between 15 and 130 micrometer which were thermally-sprayed onto a Si substrate. Neutron transmission images could be used to identify tiny voids in a thermally-sprayed continuous Gd2O3 film on a Si substrate which could not be seen in SEM images. We also found that neutron transmission images revealed pattern formations, mosaic features and co-existing dendritic phases in Woods metal samples with constituent elements Bi, Pb, Sn and Cd. These results demonstrate the merits of the current-biased kinetic inductance detector (CB-KID) system for practical studies in materials science. Moreover, we found that operating the detector at a more optimal temperature (7.9 K) appreciably improved the effective detection efficiency when compared to previous studies conducted at 4 K. This is because the effective size of hot-spots in the superconducting meanderline planes increases with temperature, which makes particle detections more likely.



قيم البحث

اقرأ أيضاً

We report superconducting kinetic inductance memory (SKIM) element, which can be controlled exclusively by the bias supercurrent, without involving magnetic fields and heating elements. The SKIM is non-volatile memory. The device is made of Nb and it can operate reliable up to 2.8 K. The achieved error rate is as low as one in 100000 operations.
Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation. While concurrent progress in additive manufacturing, `3D prin ting, opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the first synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements. While the lower transition temperature, not previously known in literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of $8pm3{mu}$m - roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors. This large London penetration depth suggests that Ti-6Al-4V may be a suitable material for high kinetic inductance applications such as single photon counting or parametric amplification used in quantum computing.
We previously proposed a method to detect neutrons by using a current-biased kinetic inductance detector (CB-KID), where neutrons are converted into charged particles using a 10B conversion layer. The charged particles are detected based on local cha nges in kinetic inductance of X and Y superconducting meanderlines under a modest DC bias current. The system uses a delay-line method to locate the positions of neutron-10B reactions by acquiring the four arrival timestamps of signals that propagate from hot spots created by a passing charged particle to the end electrodes of the meanderlines. Unlike conventional multi-pixel imaging systems, the CB-KID system performs high spatial resolution imaging over a 15 mm x 15 mm sensitive area using only four channel readouts. Given the large sensitive area, it is important to check the spatial homogeneity and linearity of detected neutron positions when imaging with CB-KID. To this end we imaged a pattern of 10B dot absorbers with a precise dot pitch to investigate the spatial homogeneity of the detector. We confirmed the spatial homogeneity of detected dot positions based on the distribution of measured dot pitches across the sensitive area of the detector. We demonstrate potential applications of the system by taking a clear transmission image of tiny metallic screws and nuts and a ladybug. The image was useful for characterizing the ladybug noninvasively. Detection efficiencies were low when the detector was operated at 4 K, so we plan to explore raising the operating temperature towards the critical temperature of the detector as a means to improve counting rates.
Neutron imaging is one of the key technologies for non-destructive transmission testing. Recent progress in the development of intensive neutron sources allows us to perform energy-resolved neutron imaging with high spatial resolution. Substantial ef forts have been devoted to developing a high spatial and temporal resolution neutron imager. We have been developing a neutron imager aiming at conducting high spatial and temporal resolution imaging based on a delay-line neutron detector, called the current-biased kinetic-inductance detector, with a conversion layer $^{10}$B. The detector allowed us to obtain a neutron transmission image with four signal readout lines. Herein, we expanded the sensor active area, and improved the spatial resolution of the detector. We examined the capability of high spatial resolution neutron imaging over the sensor active area of 15 $times$ 15 mm$^2$ for various samples, including biological and metal ones. We also demonstrated an energy-resolved neutron image in which stainless-steel specimens were discriminating of other specimens with the aid of the Bragg edge transmission.
A simple method has been developed for manufacturing a thin film superconducting quantum interferometer (SQI) with ultralow inductance (~10^-13 H). Current-voltage and voltage-field characteristics of the SQI are presented. The basic design equations are obtained and confirmed experimentally. The SQI has been used for the first time to determine the penetration depth of a magnetic field into a film of 50% In-50% Sn alloy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا