ترغب بنشر مسار تعليمي؟ اضغط هنا

Bianchi Type-II Cosmological Model with Viscous Fluid

108   0   0.0 ( 0 )
 نشر من قبل Abhik Kumar Sanyal Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A spatially homogeneous and locally rotationally symmetric Bianchi type-II cosmological model under the influence of both shear and bulk viscosity has been studied. Exact solutions are obtained with a barotropic equation of state between thermodynamics pressure and the energy density of the fluid, and considering the linear relationships amongst the energy density, the expansion scalar and the shear scalar. Special cases with vanishing bulk viscosity coefficients and with the perfect fluid in the absence of viscosity have also been studied. The formal appearance of the solutions is the same for both the viscous as well as the perfect fluids. The difference is only in choosing a constant parameter which appears in the solutions. In the cases of either a fluid with bulk viscosity alone or a perfect fluid, the barotropic equation of state is no longer an additional assumption to be imposed; rather it follows directly from the field equations.



قيم البحث

اقرأ أيضاً

In this paper we study the exact solutions for a viscous fluid distribution in Bianchi II, VIII, and IX models. The metric is simplified by assuming a relationship between the coefficients and the metric tensor. Solutions are obtained in two special cases: in one, an additional assumption is made where the matter density and the expansion scalar have a definite relation and in the other a barotropic equation of state between the matter density and the thermodynamic pressure is assumed. While the Bianchi II solutions are already found in the literature the other two classes of solutions are apparently new.
In this paper, we have investigated a bulk viscous anisotropic Universe and constrained its model parameters with recent $H(z)$ and Pantheon compilation data. Using cosmic chronometric technique, we estimate the present value of Hubbles constant as $ H_{0} = 69.39 pm 1.54~km~s^{-1}Mpc^{-1}$, $70.016 pm 1.65~km~s^{-1}Mpc^{-1}$ and $69.36 pm 1.42~km~s^{-1}Mpc^{-1}$ by bounding our derived model with recent $H(z)$ data, Pantheon and joint $H(z)$ and Pantheon data respectively. The present age of the Universe is specified as $t_0= 0.9796H_0^{-1}sim 13.79$ Gyrs. The model favours a transitioning Universe with the transition red-shift as $z_{t} = 0.73$. We have reconstructed the jerk parameter using the observational data sets. From the analysis of the jerk parameter, it is observed that, our derived model shows a marginal departure from the concordance $Lambda$CDM model.
In this paper, we study a Bianchi type -I model of universe filled with barotropic and dark energy(DE) type fluids. The present values of cosmological parameters such as Hubble constant $H_0$, barotropic, DE and anisotropy energy parameters $(Omega_{ m})_0$, $(Omega_{de})_0$ and $(Omega_{sigma})_0 $ and Equation of State(EoS) parameter for DE ($omega_{de}$) are statistically estimated in two ways by taking 38 point data set of Hubble parameter H(z) and 581 point data set of distance modulus of supernovae in the range $0leq z leq 1.414$. It is found that the results agree with the Planck result [P.A.R. Ade, et al., Astron. Astrophys. 594 A14 (2016)] and more latest result obtained by Amirhashchi and Amirhashchi [H. Amirhashchi and S. Amirhashchi, arXiv:1811.05400v4 (2019)]. Various physical properties such as age of the universe, deceleration parameter etc have also been investigated.
The paper presents some exact solutions of Bianchi types I, III and Kantowski-Sachs cosmological models consisting of a dissipative fluid along with an axial magnetic field. A barytropic equation of state between the thermodynamic pressure and the ma tter density, together with a pair of linear relations between the matter density, the shear scalar, and the expansion scalar have been assumed for simplicity. The solutions are basically of two different types, one for the Bianchi-I and the other for Bianchi-III and Kantowski-Sachs type. The presence of the magnetic field, however, does not change the fundamental nature of the initial singularity.
180 - Seyen Kouwn , Phillial Oh 2012
We propose a dark energy model with a logarithmic cosmological fluid which can result in a very small current value of the dark energy density and avoid the coincidence problem without much fine-tuning. We construct a couple of dynamical models that could realize this dark energy at very low energy in terms of four scalar fields quintessence and discuss the current acceleration of the Universe. Numerical values can be made to be consistent with the accelerating Universe with adjustment of the two parameters of the theory. The potential can be given only in terms of the scale factor, but the explicit form at very low energy can be obtained in terms of the scalar field to yield of the form V(phi)=exp(-2phi)(frac{4 A}{3}phi+B). Some discussions and the physical implications of this approach are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا