ترغب بنشر مسار تعليمي؟ اضغط هنا

Comprehensive Study: How the Context Information of Different Granularity Affects Dialogue State Tracking?

89   0   0.0 ( 0 )
 نشر من قبل Puhai Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dialogue state tracking (DST) plays a key role in task-oriented dialogue systems to monitor the users goal. In general, there are two strategies to track a dialogue state: predicting it from scratch and updating it from previous state. The scratch-based strategy obtains each slot value by inquiring all the dialogue history, and the previous-based strategy relies on the current turn dialogue to update the previous dialogue state. However, it is hard for the scratch-based strategy to correctly track short-dependency dialogue state because of noise; meanwhile, the previous-based strategy is not very useful for long-dependency dialogue state tracking. Obviously, it plays different roles for the context information of different granularity to track different kinds of dialogue states. Thus, in this paper, we will study and discuss how the context information of different granularity affects dialogue state tracking. First, we explore how greatly different granularities affect dialogue state tracking. Then, we further discuss how to combine multiple granularities for dialogue state tracking. Finally, we apply the findings about context granularity to few-shot learning scenario. Besides, we have publicly released all codes.



قيم البحث

اقرأ أيضاً

113 - Su Zhu , Jieyu Li , Lu Chen 2020
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. T o encode the dialogue context efficiently, we utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST. To consider relations among different domain-slots, the schema graph involving prior knowledge is exploited. In this paper, a novel context and schema fusion network is proposed to encode the dialogue context and schema graph by using internal and external attention mechanisms. Experiment results show that our approach can obtain new state-of-the-art performance of the open-vocabulary DST on both MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks.
66 - Puhai Yang , Heyan Huang , 2020
As a key component in a dialogue system, dialogue state tracking plays an important role. It is very important for dialogue state tracking to deal with the problem of unknown slot values. As far as we known, almost all existing approaches depend on p ointer network to solve the unknown slot value problem. These pointer network-based methods usually have a hidden assumption that there is at most one out-of-vocabulary word in an unknown slot value because of the character of a pointer network. However, often, there are multiple out-of-vocabulary words in an unknown slot value, and it makes the existing methods perform bad. To tackle the problem, in this paper, we propose a novel Context-Sensitive Generation network (CSG) which can facilitate the representation of out-of-vocabulary words when generating the unknown slot value. Extensive experiments show that our proposed method performs better than the state-of-the-art baselines.
Dialogue state tracking (DST) is a pivotal component in task-oriented dialogue systems. While it is relatively easy for a DST model to capture belief states in short conversations, the task of DST becomes more challenging as the length of a dialogue increases due to the injection of more distracting contexts. In this paper, we aim to improve the overall performance of DST with a special focus on handling longer dialogues. We tackle this problem from three perspectives: 1) A model designed to enable hierarchical slot status prediction; 2) Balanced training procedure for generic and task-specific language understanding; 3) Data perturbation which enhances the models ability in handling longer conversations. We conduct experiments on the MultiWOZ benchmark, and demonstrate the effectiveness of each component via a set of ablation tests, especially on longer conversations.
Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-trainin g objectives as well as the formats of context representations. We demonstrate that the choice of pre-training objective makes a significant difference to the state tracking quality. In particular, we find that masked span prediction is more effective than auto-regressive language modeling. We also explore using Pegasus, a span prediction-based pre-training objective for text summarization, for the state tracking model. We found that pre-training for the seemingly distant summarization task works surprisingly well for dialogue state tracking. In addition, we found that while recurrent state context representation works also reasonably well, the model may have a hard time recovering from earlier mistakes. We conducted experiments on the MultiWOZ 2.1-2.4, WOZ 2.0, and DSTC2 datasets with consistent observations.
Most recently proposed approaches in dialogue state tracking (DST) leverage the context and the last dialogue states to track current dialogue states, which are often slot-value pairs. Although the context contains the complete dialogue information, the information is usually indirect and even requires reasoning to obtain. The information in the lastly predicted dialogue states is direct, but when there is a prediction error, the dialogue information from this source will be incomplete or erroneous. In this paper, we propose the Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations network (FPDSC). This model extracts information of each dialogue turn by modeling interactions among each turn utterance, the corresponding last dialogue states, and dialogue slots. Then the representation of each dialogue turn is aggregated by a hierarchical structure to form the passage information, which is utilized in the current turn of DST. Experimental results validate the effectiveness of the fusion network with 55.03% and 59.07% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets, which reaches the state-of-the-art performance. Furthermore, we conduct the deleted-value and related-slot experiments on MultiWOZ 2.1 to evaluate our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا