ﻻ يوجد ملخص باللغة العربية
Whilst lattice-based cryptosystems are believed to be resistant to quantum attack, they are often forced to pay for that security with inefficiencies in implementation. This problem is overcome by ring- and module-based schemes such as Ring-LWE or Module-LWE, whose keysize can be reduced by exploiting its algebraic structure, allowing for neater and faster computations. Many rings may be chosen to define such cryptoschemes, but cyclotomic rings, due to their cyclic nature allowing for easy multiplication, are the community standard. However, there is still much uncertainty as to whether this structure may be exploited to an adversarys benefit. In this paper, we show that the decomposition group of a cyclotomic ring of arbitrary conductor may be utilised in order to significantly decrease the dimension of the ideal (or module) lattice required to solve a given instance of SVP. Moreover, we show that there exist a large number of rational primes for which, if the prime ideal factors of an ideal lie over primes of this form, give rise to an easy instance of SVP. However, it is important to note that this work does not break Ring-LWE or Module-LWE, since the security reduction is from worst case ideal or module SVP to average case Ring-LWE or Module-LWE respectively, and is one way.
This paper proposes a new signature scheme based on two hard problems : the cube root extraction modulo a composite moduli (which is equivalent to the factorisation of the moduli, IFP) and the discrete logarithm problem(DLP). By combining these two c
We consider a key encapsulation mechanism (KEM) based on Module-LWE where reconciliation is performed on the 8-dimensional lattice $E_8$, which admits a fast CVP algorithm. Our scheme generates 256 bits of key and requires 3 or 4 bits of reconciliati
The application of machine learning (ML) algorithms are massively scaling-up due to rapid digitization and emergence of new tecnologies like Internet of Things (IoT). In todays digital era, we can find ML algorithms being applied in the areas of heal
How to construct an ideal multi-secret sharing scheme for general access structures is difficult. In this paper, we solve an open problem proposed by Spiez et al.recently [Finite Fields and Their Application, 2011(17) 329-342], namely to design an al
Elliptic bases, introduced by Couveignes and Lercier in 2009, give an elegant way of representing finite field extensions. A natural question which seems to have been considered independently by several groups is to use this representation as a start