ﻻ يوجد ملخص باللغة العربية
Modulating image restoration level aims to generate a restored image by altering a factor that represents the restoration strength. Previous works mainly focused on optimizing the mean squared reconstruction error, which brings high reconstruction accuracy but lacks finer texture details. This paper presents a Controllable Unet Generative Adversarial Network (CUGAN) to generate high-frequency textures in the modulation tasks. CUGAN consists of two modules -- base networks and condition networks. The base networks comprise a generator and a discriminator. In the generator, we realize the interactive control of restoration levels by tuning the weights of different features from different scales in the Unet architecture. Moreover, we adaptively modulate the intermediate features in the discriminator according to the severity of degradations. The condition networks accept the condition vector (encoded degradation information) as input, then generate modulation parameters for both the generator and the discriminator. During testing, users can control the output effects by tweaking the condition vector. We also provide a smooth transition between GAN and MSE effects by a simple transition method. Extensive experiments demonstrate that the proposed CUGAN achieves excellent performance on image restoration modulation tasks.
Machine learning and many of its applications are considered hard to approach due to their complexity and lack of transparency. One mission of human-centric machine learning is to improve algorithm transparency and user satisfaction while ensuring an
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution. In recent years, solutions that are based on deep Convolutional Neural Networks (CNNs) have shown great promise. Yet, most of these tech
Hybrid-distorted image restoration (HD-IR) is dedicated to restore real distorted image that is degraded by multiple distortions. Existing HD-IR approaches usually ignore the inherent interference among hybrid distortions which compromises the restor
Deep learning methods have witnessed the great progress in image restoration with specific metrics (e.g., PSNR, SSIM). However, the perceptual quality of the restored image is relatively subjective, and it is necessary for users to control the recons
We present a single-image 3D face synthesis technique that can handle challenging facial expressions while recovering fine geometric details. Our technique employs expression analysis for proxy face geometry generation and combines supervised and uns