ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$

201   0   0.0 ( 0 )
 نشر من قبل Zhe Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The signatures of topological superconductivity (TSC) in the superconducting materials with topological nontrivial states prompt intensive researches recently. Utilizing high-resolution angle-resolved photoemission spectroscopy and first-principles calculations, we demonstrate multiple Dirac fermions and surface states in superconductor BaSn$_3$ with a critical transition temperature of about 4.4 K. We predict and then unveil the existence of two pairs of type-uppercaseexpandafter{romannumeral1} topological Dirac fermions residing on the rotational axis. Type-uppercaseexpandafter{romannumeral2} Dirac fermions protected by screw axis are confirmed in the same compound. Further calculation for the spin helical texture of the observed surface states originating from the Dirac fermions give an opportunity for realization of TSC in one single material. Hosting multiple Dirac fermions and topological surface states, the intrinsic superconductor BaSn$_3$ is expected to be a new platform for further investigation of the topological quantum materials as well as TSC.

قيم البحث

اقرأ أيضاً

110 - Y. K. Song , G. W. Wang , S. C. Li 2019
Topological nodal-line semimetals with exotic quantum properties are characterized by symmetry-protected line-contact bulk band crossings in the momentum space. However, in most of identified topological nodal-line compounds, these topological non-tr ivial nodal lines are enclosed by complicated topological trivial states at the Fermi energy ($E_F$), which would perplex their identification and hinder further applications. Utilizing angle-resolved photoemission spectroscopy and first-principles calculations, we provide compelling evidence for the existence of Dirac nodal-line fermions in the monoclinic semimetal SrAs$_3$, which are close to $E_F$ and away from distraction of complex trivial Fermi surfaces or surface states. Our calculation indicates that two bands with opposite parity are inverted around emph{Y} near $E_F$, which results in the single nodal loop at the $Gamma$-emph{Y}-emph{S} plane with a negligible spin-orbit coupling effect. We track these band crossings and then unambiguously identify the complete nodal loop quantitatively, which provides a critical experimental support to the prediction of nodal-line fermions in the CaP$_3$ family of materials. Hosting simple topological non-trivial bulk electronic states around $E_F$ and no interfering with surface states on the natural cleavage plane, SrAs$_3$ is expected to be a potential platform for topological quantum state investigation and applications.
Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced zero bias conductance peak at low temperatures, the magnitude of which is several times the normal state conductance of the junction. Such a conductance ano maly is representative of unconventional superconductivity and is interpreted as a direct signature of an odd frequency superconducting order.
In the presence of certain symmetries, three-dimensional Dirac semimetals can harbor not only surface Fermi arcs, but also surface Dirac cones. Motivated by the experimental observation of rotation-symmetry-protected Dirac semimetal states in iron-ba sed superconductors, we investigate the potential intrinsic topological phases in a $C_{4z}$-rotational invariant superconducting Dirac semimetal with $s_{pm}$-wave pairing. When the normal state harbors only surface Fermi arcs on the side surfaces, we find that an interesting gapped superconducting state with a quartet of Majorana cones on each side surface can be realized, even though the first-order topology of its bulk is trivial. When the normal state simultaneously harbors surface Fermi arcs and surface Dirac cones, we find that a second-order time-reversal invariant topological superconductor with helical Majorana hinge states can be realized. The criteria for these two distinct topological phases have a simple geometric interpretation in terms of three characteristic surfaces in momentum space. By reducing the bulk material to a thin film normal to the axis of rotation symmetry, we further find that a two-dimensional first-order time-reversal invariant topological superconductor can be realized if the inversion symmetry is broken by applying a gate voltage. Our work reveals that diverse topological superconducting phases and types of Majorana modes can be realized in superconducting Dirac semimetals.
High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the G(0,0) point exhibit different superc onducting gaps. The inner Fermi surface sheet shows larger (10-12 meV) and slightly momentum-dependent gap while the outer one has smaller (7-8 meV) and nearly isotropic gap. The lack of gap node in both Fermi surface sheets favours s-wave superconducting gap symmetry. Superconducting gap opening is also observed at the M(pi,pi) point. The two Fermi surface spots near the M point are gapped below Tc but the gap persists above Tc. The rich and detailed superconducting gap information will provide key insights and constraints in understanding pairing mechanism in the iron-based superconductors.
264 - P. M. C. Rourke 2004
Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflec tion characteristics with multiple structures which depend on junction impedance. Spectral analysis using the generalized Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our observations indicate a highly unconventional pairing mechanism, possibly involving multiple bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا