ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoptera in nonlinear woodpile chains with zero precompression

272   0   0.0 ( 0 )
 نشر من قبل Guo Deng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use exponential asymptotics to study travelling waves in woodpile systems modelled as singularly perturbed granular chains with zero precompression and small mass ratio. These systems are strongly nonlinear, and there is no analytic expression for their leading-order solution. We instead obtain an approximated leading-order solution using a hybrid numerical-analytic method. We show that travelling waves in these nonlinear woodpile systems are typically nanoptera, or travelling waves with exponentially small but non-decaying oscillatory tails which appear as a Stokes curve is crossed. We demonstrate that travelling wave solutions in the zero precompression regime contain two Stokes curves, and hence two sets of tailing oscillations in the solution. We calculate the behaviour of these oscillations explicitly, and show that there exist system configurations which cause the oscillations to cancel entirely, producing solitary wave behaviour. We then study the behaviour of travelling waves in woodpile chains as precompression is increased, and show that there exists a value of the precompression above which the two Stokes curves coalesce into a single curve, meaning that cancellation of the tailing oscillations no longer occurs. This is consistent with previous studies, which showed that cancellation does not occur in chains with strong precompression.



قيم البحث

اقرأ أيضاً

We study ``nanoptera, which are non-localized solitary waves with exponentially small but non-decaying oscillations, in two singularly-perturbed Hertzian chains with precompression. These two systems are woodpile chains (which we model as systems of Hertzian particles and springs) and diatomic Hertzian chains with alternating masses. We demonstrate that nanoptera arise from Stokes phenomena and appear as special curves, called Stokes curves, are crossed in the complex plane. We use techniques from exponential asymptotics to obtain approximations of the oscillation amplitudes. Our analysis demonstrates that traveling waves in a singularly perturbed woodpile chain have a single Stokes curve, across which oscillations appear. Comparing these asymptotic predictions with numerical simulations reveals that this accurately describes the non-decaying oscillatory behavior in a woodpile chain. We perform a similar analysis of a diatomic Hertzian chain, that the nanpteron solution has two distinct exponentially small oscillatory contributions. We demonstrate that there exists a set of mass ratios for which these two contributions cancel to produce localized solitary waves. This result builds on prior experimental and numerical observations that there exist mass ratios that support localized solitary waves in diatomic Hertzian chains without precompression. Comparing asymptotic and numerical results in a diatomic Hertzian chain with precompression reveals that our exponential asymptotic approach accurately predicts the oscillation amplitude for a wide range of system parameters, but it fails to identify several values of the mass ratio that correspond to localized solitary-wave solutions.
We consider longitudinal nonlinear atomic vibrations in uniformly strained carbon chains with the cumulene structure ($=C=C=)_{n}$. With the aid of ab initio simulations, based on the density functional theory, we have revealed the phenomenon of the $pi$-mode softening in a certain range of its amplitude for the strain above the critical value $eta_{c}approx 11,{%}$. Condensation of this soft mode induces the structural transformation of the carbon chain with doubling of its unit cell. This is the Peierls phase transition in the strained cumulene, which was previously revealed in [Nano Lett. 14, 4224 (2014)]. The Peierls transition leads to appearance of the energy gap in the electron spectrum of the strained carbyne, and this material transforms from the conducting state to semiconducting or insulating states. The authors of the above paper emphasize that such phenomenon can be used for construction of various nanodevices. The $pi$-mode softening occurs because the old equilibrium positions (EQPs), around which carbon atoms vibrate at small strains, lose their stability and these atoms begin to vibrate in the new potential wells located near old EQPs. We study the stability of the new EQPs, as well as stability of vibrations in their vicinity. In previous paper [Physica D 203, 121(2005)], we proved that only three symmetry-determined Rosenberg nonlinear normal modes can exist in monoatomic chains with arbitrary interparticle interactions. They are the above-discussed $pi$-mode and two other modes, which we call $sigma$-mode and $tau$-mode. These modes correspond to the multiplication of the unit cell of the vibrational state by two, three or four times compared to that of the equilibrium state. We study properties of these modes in the chain model with arbitrary pair potential of interparticle interactions.
We report results of systematic analysis of various modes in the flatband lattice, based on the diamond-chain model with the on-site cubic nonlinearity, and its double version with the linear on-site mixing between the two lattice fields. In the sing le-chain system, a full analysis is presented, first, for the single nonlinear cell, making it possible to find all stationary states, viz., antisymmetric, symmetric, and asymmetric ones, including an exactly investigated symmetry-breaking bifurcation of the subcritical type. In the nonlinear infinite single-component chain, compact localized states (CLSs) are found in an exact form too, as an extension of known compact eigenstates of the linear diamond chain. Their stability is studied by means of analytical and numerical methods, revealing a nontrivial stability boundary. In addition to the CLSs, various species of extended states and exponentially localized lattice solitons of symmetric and asymmetric types are studied too, by means of numerical calculations and variational approximation. As a result, existence and stability areas are identified for these modes. Finally, the linear version of the double diamond chain is solved in an exact form, producing two split flatbands in the systems spectrum.
A hybrid asymptotic-numerical theory is developed to analyze the effect of different types of localized heterogeneities on the existence, linear stability, and slow dynamics of localized spot patterns for the two-component Schnakenberg reaction-diffu sion model in a 2-D domain. Two distinct types of localized heterogeneities are considered: a strong localized perturbation of a spatially uniform feed rate and the effect of removing a small hole in the domain, through which the chemical species can leak out. Our hybrid theory reveals a wide range of novel phenomena such as, saddle-node bifurcations for quasi-equilibrium spot patterns that otherwise would not occur for a homogeneous medium, a new type of spot solution pinned at the concentration point of the feed rate, spot self-replication behavior leading to the creation of more than two new spots, and the existence of a creation-annihilation attractor with at most three spots. Depending on the type of localized heterogeneity introduced, localized spots are either repelled or attracted towards the localized defect on asymptotically long time scales. Results for slow spot dynamics and detailed predictions of various instabilities of quasi-equilibrium spot patterns, all based on our hybrid asymptotic-numerical theory, are illustrated and confirmed through extensive full PDE numerical simulations.
We study the existence and stability of multibreathers in Klein-Gordon chains with interactions that are not restricted to nearest neighbors. We provide a general framework where such long range effects can be taken into consideration for arbitrarily varying (as a function of the node distance) linear couplings between arbitrary sets of neighbors in the chain. By examining special case examples such as three-site breathers with next-nearest-neighbors, we find {it crucial} modifications to the nearest-neighbor picture of one-dimensional oscillators being excited either in- or anti-phase. Configurations with nontrivial phase profiles, arise, as well as spontaneous symmetry breaking (pitchfork) bifurcations, when these states emerge from (or collide with) the ones with standard (0 or $pi$) phase difference profiles. Similar bifurcations, both of the supercritical and of the subcritical type emerge when examining four-site breathers with either next-nearest-neighbor or even interactions with the three-nearest one-dimensional neighbors. The latter setting can be thought of as a prototype for the two-dimensional building block, namely a square of lattice nodes, which is also examined. Our analytical predictions are found to be in very good agreement with numerical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا