ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation and estimation of a point-process market-model with a matching engine

145   0   0.0 ( 0 )
 نشر من قبل Ivan Jericevich
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The extent to which a matching engine can cloud the modelling of underlying order submission and management processes in a financial market remains an unanswered concern with regards to market models. Here we consider a 10-variate Hawkes process with simple rules to simulate common order types which are submitted to a matching engine. Hawkes processes can be used to model the time and order of events, and how these events relate to each other. However, they provide a freedom with regards to implementation mechanics relating to the prices and volumes of injected orders. This allows us to consider a reference Hawkes model and two additional models which have rules that change the behaviour of limit orders. The resulting trade and quote data from the simulations are then calibrated and compared with the original order generating process to determine the extent with which implementation rules can distort model parameters. Evidence from validation and hypothesis tests suggest that the true model specification can be significantly distorted by market mechanics, and that practical considerations not directly due to model specification can be important with regards to model identification within an inherently asynchronous trading environment.



قيم البحث

اقرأ أيضاً

An agent-based model with interacting low frequency liquidity takers inter-mediated by high-frequency liquidity providers acting collectively as market makers can be used to provide realistic simulated price impact curves. This is possible when agent -based model interactions occur asynchronously via order matching using a matching engine in event time to replace sequential calendar time market clearing. Here the matching engine infrastructure has been modified to provide a continuous feed of order confirmations and updates as message streams in order to conform more closely to live trading environments. The resulting trade and quote message data from the simulations are then aggregated, calibrated and visualised. Various stylised facts are presented along with event visualisations and price impact curves. We argue that additional realism in modelling can be achieved with a small set of agent parameters and simple interaction rules once interactions are reactive, asynchronous and in event time. We argue that the reactive nature of market agents may be a fundamental property of financial markets and when accounted for can allow for parsimonious modelling without recourse to additional sources of noise.
This paper presents a new financial market simulator that may be used as a tool in both industry and academia for research in market microstructure. It allows multiple automated traders and/or researchers to simultaneously connect to an exchange-like environment, where they are able to asynchronously trade several financial assets at the same time. In its current iteration, this order-driven market implements the basic rules of U.S. equity markets, supporting both market and limit orders, and executing them in a first-in-first-out fashion. We overview the system architecture and we present possible use cases. We demonstrate how a set of automated agents is capable of producing a price process with characteristics similar to the statistics of real price from financial markets. Finally, we detail a market stress scenario and we draw, what we believe to be, interesting conclusions about crash events.
We propose the Hawkes flocking model that assesses systemic risk in high-frequency processes at the two perspectives -- endogeneity and interactivity. We examine the futures markets of WTI crude oil and gasoline for the past decade, and perform a com parative analysis with conditional value-at-risk as a benchmark measure. In terms of high-frequency structure, we derive the empirical findings. The endogenous systemic risk in WTI was significantly higher than that in gasoline, and the level at which gasoline affects WTI was constantly higher than in the opposite case. Moreover, although the relative influences degree was asymmetric, its difference has gradually reduced.
We present a Hawkes model approach to foreign exchange market in which the high frequency price dynamics is affected by a self exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizeable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering non-causal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.
The three-state agent-based 2D model of financial markets in the version proposed by Giulia Iori in 2002 has been herein extended. We have introduced the increase of herding behaviour by modelling the altering trust of an agent in his nearest neighbo urs. The trust increases if the neighbour has foreseen the price change correctly and the trust decreases in the opposite case. Our version only slightly increases the number of parameters present in the Iori model. This version well reproduces the main stylized facts observed on financial markets. That is, it reproduces log-returns clustering, fat-tail log-returns distribution and power-law decay in time of the volatility autocorrelation function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا