ترغب بنشر مسار تعليمي؟ اضغط هنا

Flare Induced Photospheric Velocity Diagnostics

94   0   0.0 ( 0 )
 نشر من قبل Aaron Monson Mr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present radiative hydrodynamic simulations of solar flares generated by the RADYN and RH codes to study the perturbations induced in photospheric Fe I lines by electron beam heating. We investigate how variations in the beam parameters result in discernible differences in the induced photospheric velocities. Line synthesis revealed a significant chromospheric contribution to the line profiles resulting in an apparent red asymmetry by as much as 40 m/s close to the time of maximum beam heating which was not reflective of the upflow velocities that arose from the radiative hydrodynamic simulations at those times. The apparent redshift to the overall line profile was produced by significant chromospheric emission that was blueshifted by as much as 400 m/s and fills in the blue side of the near stationary photospheric absorption profile. The velocity information that can be retrieved from photospheric line profiles during flares must therefore be treated with care to mitigate the effects of higher parts of the atmosphere providing an erroneous velocity signal.

قيم البحث

اقرأ أيضاً

358 - Q. Hao , C. Fang , M. D. Ding 2020
By use of the high-resolution spectral data and the broadband imaging obtained with the Goode Solar Telescope at the Big Bear Solar Observatory on 2013 June 6, the spectra of three typical photospheric bright points (PBPs) have been analyzed. Based o n the H$alpha$ and Ca II 8542 AA line profiles, as well as the TiO continuum emission, for the first time, the non-LTE semi-empirical atmospheric models for the PBPs are computed. The attractive characteristic is the temperature enhancement in the lower photosphere. The temperature enhancement is about 200 -- 500 K at the same column mass density as in the atmospheric model of the quiet-Sun. The total excess radiative energy of a typical PBP is estimated to be 1$times$10$^{27}$ - 2$times$10$^{27}$ ergs, which can be regarded as the lower limit energy of the PBPs. The radiation flux in the visible continuum for the PBPs is about 5.5$times$10$^{10}$ ergs cm$^{-2}$ s$^{-1}$. Our result also indicates that the temperature in the atmosphere above PBPs is close to that of a plage. It gives a clear evidence that PBPs may contribute significantly to the heating of the plage atmosphere. Using our semi-empirical atmospheric models, we estimate self-consistently the average magnetic flux density $B$ in the PBPs. It is shown that the maximum value is about one kilo-Gauss, and it decreases towards both higher and lower layers, reminding us of the structure of a flux tube between photospheric granules.
243 - Ya. V. Pavlenko 2017
We present the analysis of emission lines in high-resolution optical spectra of the planet-host star Proxima Centauri (Proxima) classified as a M5.5V@. We carry out the detailed analysis of observed spectra to get a better understanding of the physic al conditions of the atmosphere of this star. We identify the emission lines in a serie series of 147 high-resolution optical spectra of the star at different levels of activity and compare them with the synthetic spectra computed over a wide spectral range. Our synthetic spectra computed with the PHOENIX 2900/5.0/0.0 model atmosphere fits pretty well the observed optical-to-near-infrared spectral energy distribution. However, modelling strong atomic lines in the blue spectrum (3900--4200AA{}) requires implementing additional opacity. We show that high temperature layers in Proxima Centauri consist in at least three emitting parts: a) a stellar chromosphere where numerous emission lines form. We suggest that some emission cores of strong absorption lines of metals form there; b) flare regions above the chromosphere, where hydrogen Balmer lines up to high transition levels (10--2) form; c) a stellar wind component with V${r}$,=,$-$30 kmps{} seen in some Balmer lines as blue shifted emission lines. We believe that the observed He line at 4026AA{} in emission can be formed in that very hot region. We show, that real structure of the atmosphere of Proxima is rather complicated. The photosphere of the star is best fit by a normal M5 dwarf spectrum. On the other hand emission lines form in the chromosphere, flare regions and extended hot envelope.
Using numerical simulations of the magnetised solar photosphere carried out with the radiative magneto-hydrodynamic code, MURaM, and detailed spectro-polarimetric diagnostics of the simulated photospheric 6302A FeI line, spectro-polarimetric signatur es of Alfven waves in magnetised intergranular lanes of the simulated solar photosphere were analysed at different positions at the solar disk. The torsional Alfven waves in the intergranular lanes are horizontal plasma motions, which do not have a thermal perturbation counterpart. We find signatures of Alfven waves as small-scale line profile Doppler shifts and Stokes-V area asymmetry enhancements in the simulated off-disk centre observations. These photospheric features disappear when the simulated observations are degraded with a telescope PSF similar to the one of Hinode. We analyse the possibilities for direct observations and confirmation of Alfven wave presence in the solar photosphere.
66 - I.V. Zimovets 2019
Solar active regions contain electric currents. Information on the distribution of currents is important for understanding the processes of energy release on the surface of the Sun and in the overlying layers. The paper presents an analysis of the pr obability density function (PDF) of the absolute value of the photospheric vertical electric current density ($|j_z|$) in 48 active regions before and after flares in 2010--2017. Calculation of $|j_z|$ is performed by applying the differential form of Amperes circuital law to photospheric vector magnetograms obtained from observations of the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). It has been established that for the studied active regions PDF($|j_z|$) is described by the Gauss function in the low-$|j_z|$ region ($|j_z| < 10110 pm 1321$ statampere/cm$^2$) and the decaying power-law function in the region of higher $|j_z|$ values. Also, for some active regions PDF($|j_z|$) can be described by the special kappa-function. The distributions of the parameters of the approximating functions are obtained using the least squares method. The average absolute value of the power-law function index is $3.69 pm 0.51$, and $3.99 pm 0.51$ of the kappa-function. No systematic changes in parameters during the flares are detected. An explicit connection between the parameters and the flare X-ray class, as well as with the Hale magnetic class of the active regions, is not found. Arguments are presented in favor of the suggestion that the Gaussian distribution in the low-value region of PDF($|j_z|$) represents noise in the data, while the power-law tail reflects the nature of electric currents in the solar active regions.
The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Halpha and Ca II 8542 {AA} lines are studied using high spati al, temporal and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1-m Solar Telescope. The temporal evolution of the Halpha line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum, and excess in the blue wing (blue asymmetry) after maximum. However, the Ca II 8542 {AA} line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesise spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Halpha is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modifies the wavelength of the central reversal in the Halpha line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا