ﻻ يوجد ملخص باللغة العربية
The WZW models describe the dynamics of the edge modes of Chern-Simons theories in three dimensions. We explore the WZW models which can be mapped to supersymmetric theories via the generalized Jordan-Wigner transformation. Some of such models have supersymmetric Ramond vacua, but the others break the supersymmetry spontaneously. We also make a comment on recent proposals that the Read-Rezayi states at filling fraction $ u=1/2,~2/3$ are able to support supersymmetry.
We investigate the emergence of ${cal N}=1$ supersymmetry in the long-range behavior of three-dimensional parity-symmetric Yukawa systems. We discuss a renormalization approach that manifestly preserves supersymmetry whenever such symmetry is realize
We consider the Abelian Higgs model in 3+1 dimensions with vortex lines, into which charged fermions are introduced. This could be viewed as a model of a type-II superconductor with unpaired electrons (or holes), analogous to the boson-fermion model
To clarify the mathematical structure of the RG-derived holographic dual field theory, we rewrite the string-theory based conventionally utilized dual holographic effective field theory based on the ADM decomposition of the metric tensor. This compar
Applying recursive renormalization group transformations to a scalar field theory, we obtain an effective quantum gravity theory with an emergent extra dimension, described by a dual holographic Einstein-Klein-Gordon type action. Here, the dynamics o
We show that edges of Quantum Spin Hall topological insulators represent a natural platform for realization of exotic supersolid phase. On one hand, fermionic edge modes are helical due to the nontrivial topology of the bulk. On the other hand, a dis