ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-photon optical diode in a chiral waveguide

381   0   0.0 ( 0 )
 نشر من قبل Jinlei Tan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the coherent transport of one or two photons in a 1D waveguide chirally coupled to a nonlinear resonator. Analytic solutions of the one-photon and two-photon scattering is derived. Although the resonator acts as a non-reciprocal phase shifter, light transmission is reciprocal at one-photon level. However, the forward and reverse transmitted probabilities for two photons incident from either the left side or the right side of the nonlinear resonator are nonreciprocal due to the energy redistribution of the two-photon bound state. Hence, the nonlinear resonator acts as an optical diode at two-photon level.



قيم البحث

اقرأ أيضاً

We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex and we provide a di agrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a $Lambda$-system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.
Entanglement is the fuel of advanced quantum technology. It is for instance consumed in measurement-based quantum computing and allows loss-tolerant encoding of quantum information. In photonics, entanglement has traditionally been generated probabil istically, requiring massive multiplexing for scaling up to many photons. An alternative approach utilizes quantum emitters in nanophotonic devices for deterministic generation of single photons, which an be extended to two- and multi-photon generation on demand. The proposed polarization-entanglement sources are, however, incompatible with spatial dual-rail qubit encoding, which is preferred in photonic quantum computing realized in scalable integrated photonic circuits. Here we propose and experimentally realize an on-demand source of dual-rail photon pairs using a quantum dot in a planar nanophotonic waveguide. The source exploits the cascaded decay of a biexciton state and chiral light-matter coupling to achieve deterministic generation of spatial dual-rail Bell pairs with the amount of entanglement determined by the chirality. The operational principle can readily be extended to multi-photon entanglement generation, and such sources may be interfaced with advanced photonic-integrated circuits, e.g., for efficient preparation of entanglement resource states for photonic quantum computing.
In the paper, we employ a wavefunction approach to investigate the evolution of a two-photon wave packet propagating in a one-dimensional waveguide coupled to the Jaynes-Cummings (JC) system. We derive and solve, both analytically and numerically, a set of equations of motion governing the quantum state of the system. That allows us to provide real-time analysis of the evolution of the wave packet two-photon joint spectrum (2PJS) and the excitation dynamics of the JC system in the course of its interaction with the two-photon pulse. We demonstrate that the 2PJS and the spectrum of the wave packet scattered from the JC system experience transformation for nonzero atom-cavity couplings. Moreover, using Schmidt decomposition, we show that the scattered photons feature frequency entanglement contrary to the incident ones which are not entangled.
We exploit the nonlinearity arising from the spin-photon interaction in an InAs quantum dot to demonstrate phase shifts of scattered light pulses at the single-photon level. Photon phase shifts of close to 90 degrees are achieved using a charged quan tum dot in a micropillar cavity. We also demonstrate a photon phase switch by using a spin-pumping mechanism through Raman transitions in an in-plane magnetic field. The experimental findings are supported by a theoretical model which explores the dynamics of the system. Our results demonstrate the potential of quantum dot-induced nonlinearities for quantum information processing.
We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of a closed waveguide, in which photon wavenumbers and frequencies are discretized, and characterize the stable states in which one excitation is steadily shared between the field and the emitters. We unearth finite-size effects in the field-emitter interactions and identify a family of dressed states, that represent the forerunners of bound states in the continuum in the limit of an infinite waveguide. We finally consider the potential interest of such states for applications in the field of quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا