ﻻ يوجد ملخص باللغة العربية
For a nonincreasing function $psi$, let $textrm{Exact}(psi)$ be the set of complex numbers that are approximable by complex rational numbers to order $psi$ but to no better order. In this paper, we obtain the Hausdorff dimension and packing dimension of $textrm{Exact}(psi)$ when $psi(x)=o(x^{-2})$. We also prove that the lower bound of the Hausdorff dimension is greater than $2-tau/(1-2tau)$ when $tau=limsup_{xtoinfty}psi(x)x^2$ small enough.
Let $b ge 2$ and $ell ge 1$ be integers. We establish that there is an absolute real number $K$ such that all the partial quotients of the rational number $$ prod_{h = 0}^ell , (1 - b^{-2^h}), $$ of denominator $b^{2^{ell+1} - 1}$, do not exceed $exp(K (log b)^2 sqrt{ell} 2^{ell/2})$.
In this paper we present two efficient methods for reconstructing a rational number from several residue-modulus pairs, some of which may be incorrect. One method is a natural generalization of that presented by Wang, Guy and Davenport in cite{WGD198
We develop a lower bound sieve for primes under the (unlikely) assumption of infinitely many exceptional characters. Compared with the illusory sieve due to Friedlander and Iwaniec which produces asymptotic formulas, we show that less arithmetic info
Natural numbers can be divided in two non-overlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blo
We give an expression of polynomials for higher sums of powers of integers via the higher order Bernoulli numbers.