ﻻ يوجد ملخص باللغة العربية
Intelligent Transportation System (ITS) has become one of the essential components in Industry 4.0. As one of the critical indicators of ITS, efficiency has attracted wide attention from researchers. However, the next generation of urban traffic carried by multiple transport service providers may prohibit the raw data interaction among multiple regions for privacy reasons, easily ignored in the existing research. This paper puts forward a federated learning-based vehicle control framework to solve the above problem, including interactors, trainers, and an aggregator. In addition, the density-aware model aggregation method is utilized in this framework to improve vehicle control. What is more, to promote the performance of the end-to-end learning algorithm in the safety aspect, this paper proposes an imitation learning algorithm, which can obtain collision avoidance capabilities from a set of collision avoidance rules. Furthermore, a loss-aware experience selection strategy is also explored, reducing the communication overhead between the interactors and the trainers via extra computing. Finally, the experiment results demonstrate that the proposed imitation learning algorithm obtains the ability to avoid collisions and reduces discomfort by 55.71%. Besides, density-aware model aggregation can further reduce discomfort by 41.37%, and the experience selection scheme can reduce the communication overhead by 12.80% while ensuring model convergence.
Decision-making module enables autonomous vehicles to reach appropriate maneuvers in the complex urban environments, especially the intersection situations. This work proposes a deep reinforcement learning (DRL) based left-turn decision-making framew
We propose a safe DRL approach for autonomous vehicle (AV) navigation through crowds of pedestrians while making a left turn at an unsignalized intersection. Our method uses two long-short term memory (LSTM) models that are trained to generate the pe
Connected and automated vehicles have shown great potential in improving traffic mobility and reducing emissions, especially at unsignalized intersections. Previous research has shown that vehicle passing order is the key influencing factor in improv
It has been a challenge to learning skills for an agent from long-horizon unannotated demonstrations. Existing approaches like Hierarchical Imitation Learning(HIL) are prone to compounding errors or suboptimal solutions. In this paper, we propose Opt
Prior research has extensively explored Autonomous Vehicle (AV) navigation in the presence of other vehicles, however, navigation among pedestrians, who are the most vulnerable element in urban environments, has been less examined. This paper explore