ﻻ يوجد ملخص باللغة العربية
The helimagnets Cr$_{1/3}M$S$_2$ ($M$ = Nb or Ta) have attracted renewed attention due to the discovery of a chiral soltion lattice (CSL) stabilized in Cr$_{1/3}$NbS$_2$ in an applied magnetic field, but reports of unusual low-temperature transport and magnetic properties in this system lack a unifying explanation. Here we present electronic structure calculations demonstrating that Cr$_{1/3}M$S$_2$ ($M$ = Nb or Ta) are half-metals whose low-temperature electronic and magnetic behavior can be explained by the presence of a gap-like feature (width in range 40-100 meV) in the density of states of one spin channel. Our magnetometry measurements confirm the existence of this gap. Dynamic spin fluctuations driven by excitations across this gap are seen over a wide range of frequencies (0.1 Hz to MHz) with AC susceptibility and muon-spin relaxation ($mu^+$SR) measurements. We show further how effects due to the CSL in Cr$_{1/3}$NbS$_2$, as detected with $mu^+$SR, dominate over the gap-driven magnetism when the CSL is stabilized as the majority phase.
Tuning the electronic and magnetic properties of a material through strain engineering is an effective strategy to enhance the performance of electronic and spintronic devices. Recently synthesized two-dimensional transition metal carbides M$_2$C (M=
We performed susceptibility, magnetization, specific heat, and single crystal neutron diffraction measurements on single crystalline BaMn$_2$Si$_2$O$_7$. Based on the results, we revisited its spin structure with a more accurate solution and construc
Solid-state thermoelectric cooling is expected to be widely used in various cryogenic applications such as local cooling of superconducting devices. At present, however, thermoelectric cooling using p- and n-type Bi2Te3-based materials has been put t
We report an optimized chemical vapor transport method to grow single crystals of (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ where x = 0, 0.3, 0.5, 0.7 & 1. Single crystals up to 4,mm,$times$,3,mm,$times$,200,$mu$m were obtained by this method. As-grown crysta
The topologically-protected, chiral soliton lattice is a unique state of matter offering intriguing functionality and it may serve as a robust platform for storing and transporting information in future spintronics devices. While the monoaxial chiral