ﻻ يوجد ملخص باللغة العربية
We consider Sobolev mappings $fin W^{1,q}(Omega,IC)$, $1<q<infty$, between planar domains $Omegasubset IC$. We analyse the Radon-Riesz property for convex functionals of the form [fmapsto int_Omega Phi(|Df(z)|,J(z,f)) ; dz ] and show that under certain criteria, which hold in important cases, weak convergence in $W_{loc}^{1,q}(Omega)$ of (for instance) a minimising sequence can be improved to strong convergence. This finds important applications in the minimisation problems for mappings of finite distortion and the $L^p$ and $Exp$,-Teichmuller theories.
We summarize some work on CR mappings invariant under a subgroup of U(n) and prove a result on the failure of rigidity.
In the present paper, we will study geometric properties of harmonic mappings whose analytic and co-analytic parts are (shifted) generated functions of completely monotone sequences.
In this paper we give some quantative characteristics of boundary asymptotic behavior of semigroups of holomorphic self-mappings of the unit disk including the limit curvature of their trajectories at the boundary Denjoy--Wolff point. This enable us
The numerical range of holomorphic mappings arises in many aspects of nonlinear analysis, finite and infinite dimensional holomorphy, and complex dynamical systems. In particular, this notion plays a crucial role in establishing exponential and produ
In this paper, we first study the bounded mean oscillation of planar harmonic mappings, then a relationship between Lipschitz-type spaces and equivalent modulus of real harmonic mappings is established. At last, we obtain sharp estimates on Lipschitz