ﻻ يوجد ملخص باللغة العربية
We study a family of optimal control problems in which one aims at minimizing a cost that mixes a quadratic control penalization and the variance of the system, both for finitely many agents and for the mean-field dynamics as their number goes to infinity. While solutions of the discrete problem always exist in a unique and explicit form, the behavior of their macroscopic counterparts is very sensitive to the magnitude of the time horizon and penalization parameter. When one minimizes the final variance, there always exists a Lipschitz-in-space optimal controls for the infinite dimensional problem, which can be obtained as a suitable extension of the optimal controls for the finite-dimensional problems. The same holds true for variance maximizations whenever the time horizon is sufficiently small. On the contrary, for large final times (or equivalently for small penalizations of the control cost), it can be proven that there does not exist Lipschitz-regular optimal controls for the macroscopic problem.
This paper studies asymptotic solvability of a linear quadratic (LQ) mean field social optimization problem with controlled diffusions and indefinite state and control weights. Starting with an $N$-agent model, we employ a rescaling approach to deriv
In this paper we model the role of a government of a large population as a mean field optimal control problem. Such control problems are constrainted by a PDE of continuity-type, governing the dynamics of the probability distribution of the agent pop
We study a multiscale approach for the control of agent-based, two-population models. The control variable acts over one population of leaders, which influence the population of followers via the coupling generated by their interaction. We cast a qua
In this article, we provide sufficient conditions under which the controlled vector fields solution of optimal control problems formulated on continuity equations are Lipschitz regular in space. Our approach involves a novel combination of mean-field
We propose a mean-field optimal control problem for the parameter identification of a given pattern. The cost functional is based on the Wasserstein distance between the probability measures of the modeled and the desired patterns. The first-order op