ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Adiabatic Theorems: Quantum Systems Driven by Modulated Time-Varying Fields

144   0   0.0 ( 0 )
 نشر من قبل Amro Dodin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present generalized adiabatic theorems for closed and open quantum systems that can be applied to slow modulations of rapidly varying fields, such as oscillatory fields that occur in optical experiments and light induced processes. The generalized adiabatic theorems show that a sufficiently slow modulation conserves the dynamical modes of time dependent reference Hamiltonians. In the limiting case of modulations of static fields, the standard adiabatic theorems are recovered. Applying these results to periodic fields shows that they remain in Floquet states rather than in energy eigenstates. More generally, these adiabatic theorems can be applied to transformations of arbitrary time-dependent fields, by accounting for the rapidly varying part of the field through the dynamical normal modes, and treating the slow modulation adiabatically. As examples, we apply the generalized theorem to (a) predict the dynamics of a two level system driven by a frequency modulated resonant oscillation, a pathological situation beyond the applicability of earlier results, and (b) to show that open quantum systems driven by slowly turned-on incoherent light, such as biomolecules under natural illumination conditions, can only display coherences that survive in the steady state.

قيم البحث

اقرأ أيضاً

We consider a non-interacting bipartite quantum system $mathcal H_S^Aotimesmathcal H_S^B$ undergoing repeated quantum interactions with an environment modeled by a chain of independant quantum systems interacting one after the other with the bipartit e system. The interactions are made so that the pieces of environment interact first with $mathcal H_S^A$ and then with $mathcal H_S^B$. Even though the bipartite systems are not interacting, the interactions with the environment create an entanglement. We show that, in the limit of short interaction times, the environment creates an effective interaction Hamiltonian between the two systems. This interaction Hamiltonian is explicitly computed and we show that it keeps track of the order of the successive interactions with $mathcal H_S^A$ and $mathcal H_S^B$. Particular physical models are studied, where the evolution of the entanglement can be explicitly computed. We also show the property of return of equilibrium and thermalization for a family of examples.
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H )$, the emergent order is characterized by graphs $G$ and $H$. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers $r(mathcal{T}_{m},mathcal{T}_{n})$ for trees of order $m,n = 6,7,8$, most of which were previously unknown.
We generalize Katos adiabatic theorem to nonunitary dynamics with an isospectral generator. This enables us to unify two strong-coupling limits: one driven by fast oscillations under a Hamiltonian, and the other driven by strong damping under a Lindb ladian. We discuss the case where both mechanisms are present and provide nonperturbative error bounds. We also analyze the links with the quantum Zeno effect and dynamics.
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. As suming that the Hamiltonian is analytic in a finite strip around the real time axis, that some number of its time-derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is non-degenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time-derivative of the Hamiltonian, divided by the cube of the minimal gap.
An adiabatic time evolution of a closed quantum system connects eigenspaces of initial and final Hermitian Hamiltonians for slowly driven systems, or, unitary Floquet operators for slowly modulated driven systems. We show that the connection of eigen spaces depends on a topological property of the adiabatic paths for given initial and final points. An example in slowly modulated periodically driven systems is shown. These analysis are based on the topological analysis of the exotic quantum holonomy in adiabatic closed paths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا