ﻻ يوجد ملخص باللغة العربية
Most methods for publishing data with privacy guarantees introduce randomness into datasets which reduces the utility of the published data. In this paper, we study the privacy-utility tradeoff by taking maximal leakage as the privacy measure and the expected Hamming distortion as the utility measure. We study three different but related problems. First, we assume that the data-generating distribution (i.e., the prior) is known, and we find the optimal privacy mechanism that achieves the smallest distortion subject to a constraint on maximal leakage. Then, we assume that the prior belongs to some set of distributions, and we formulate a min-max problem for finding the smallest distortion achievable for the worst-case prior in the set, subject to a maximal leakage constraint. Lastly, we define a partial order on privacy mechanisms based on the largest distortion they generate. Our results show that when the prior distribution is known, the optimal privacy mechanism fully discloses symbols with the largest prior probabilities, and suppresses symbols with the smallest prior probabilities. Furthermore, we show that sets of priors that contain more uniform distributions lead to larger distortion, while privacy mechanisms that distribute the privacy budget more uniformly over the symbols create smaller worst-case distortion.
Signal degradation is ubiquitous and computational restoration of degraded signal has been investigated for many years. Recently, it is reported that the capability of signal restoration is fundamentally limited by the perception-distortion tradeoff,
Caching at the wireless edge nodes is a promising way to boost the spatial and spectral efficiency, for the sake of alleviating networks from content-related traffic. Coded caching originally introduced by Maddah-Ali and Niesen significantly speeds u
Side channels represent a broad class of security vulnerabilities that have been demonstrated to exist in many applications. Because completely eliminating side channels often leads to prohibitively high overhead, there is a need for a principled tra
Age-of-Information (AoI), or simply age, which measures the data freshness, is essential for real-time Internet-of-Things (IoT) applications. On the other hand, energy saving is urgently required by many energy-constrained IoT devices. This paper stu
Given two random variables $X$ and $Y$, an operational approach is undertaken to quantify the ``leakage of information from $X$ to $Y$. The resulting measure $mathcal{L}(X !! to !! Y)$ is called emph{maximal leakage}, and is defined as the multiplica