ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant anomalous Hall conductivity in the itinerant ferromagnet LaCrSb3 and the effect of f-electrons

203   0   0.0 ( 0 )
 نشر من قبل Chandra Shekhar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Itinerant ferromagnets constitute an important class of materials wherein spin-polarization can affect the electric transport properties in nontrivial ways. One such phenomenon is anomalous Hall effect which depends on the details of the band structure such as the amount of band crossings in the valence band of the ferromagnet. Here, we have found extraordinary anomalous Hall effect in an itinerant ferromagnetic metal LaCrSb3. The rather two-dimensional nature of the magnetic subunit imparts large anisotropic anomalous Hall conductivity of 1250 S/cm at 2K. Our investigations suggest that a strong Berry curvature by abundant momentum-space crossings and narrow energy-gap openings are the primary sources of the anomalous Hall conductivity. An important observation is the existence of quasi-dispersionless bands in LaCrSb3 which is now known to increase the anomalous Hall conductivity. After introducing f-electrons, anomalous Hall conductivity experiences more than two-fold increase and reaches 2900 S/cm in NdCrSb3.

قيم البحث

اقرأ أيضاً

67 - T. Miyasato , N. Abe , T. Fujii 2006
Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in a variety of ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show a universal scaling behavior o f anomalous Hall conductivity $sigma_{xy}$ as a function of longitudinal conductivity $sigma_{xx}$ over five orders of magnitude, which is well explained by a recent theory of the AHE taking into account both the intrinsic and extrinsic contributions. ANE is closely related with AHE and provides us with further information about the low-temperature electronic state of itinerant ferromagnets. Temperature dependence of transverse Peltier coefficient $alpha_{xy}$ shows an almost similar behavior among various ferromagnets, and this behavior is in good agreement quantitatively with that expected from the Mott rule.
We calculate the localization corrections to the anomalous Hall conductivity related to the contribution of spin-orbit scattering into the current vertex (side-jump mechanism). We show that in contrast to the ordinary Hall effect, there exists a nonv anishing localization correction to the anomalous Hall resistivity. The correction to the anomalous Hall conductivity vanishes in the case of side-jump mechanism, but is nonzero for the skew scattering. The total correction to the nondiagonal conductivity related to both mechanisms, does not compensate the correction to the diagonal conductivity.
Kagome magnets are believed to have numerous exotic physical properties due to the possible interplay between lattice geometry, electron correlation and band topology. Here, we report the large anomalous Hall effect in the kagome ferromagnet LiMn$_6$ Sn$_6$, which has a Curie temperature of 382 K and easy plane along with the kagome lattice. At low temperatures, unsaturated positive magnetoresistance and opposite signs of ordinary Hall coefficient for $rho_{xz}$ and $rho_{yx}$ indicate the coexistence of electrons and holes in the system. A large intrinsic anomalous Hall conductivity of 380 $Omega^{-1}$ cm$^{-1}$, or 0.44 $e^2/h$ per Mn layer, is observed in $sigma_{xy}^A$. This value is significantly larger than those in other $R$Mn$_6$Sn$_6$ ($R$ = rare earth elements) kagome compounds. Band structure calculations show several band crossings, including a spin-polarized Dirac point at the K point, close to the Fermi energy. The calculated intrinsic Hall conductivity agrees well with the experimental value, and shows a maximum peak near the Fermi energy. We attribute the large anomalous Hall effect in LiMn$_6$Sn$_6$ to the band crossings closely located near the Fermi energy.
The anomalous Hall effect (AHE) has been studied systematically in the low-conductivity ferromagnetic oxide Fe$_{3-x}$Zn$_x$O$_4$ with $x = 0$, 0.1, and 0.5. We used (001), (110), and (111) oriented epitaxial Fe$_{3-x}$Zn$_x$O$_4$ films grown on MgO and sapphire substrates in different oxygen partial pressure to analyze the dependence of the AHE on crystallographic orientation, Zn content, strain state, and oxygen deficiency. Despite substantial differences in the magnetic properties and magnitudes of the anomalous Hall conductivity $sigma_{xy}^{rm AHE}$ and the longitudinal conductivity $sigma_{xx}$ over several orders of magnitude, a universal scaling relation $sigma_{xy}^{rm AHE} propto sigma_{xx}^{alpha}$ with $alpha = 1.69 pm 0.08$ was found for all investigated samples. Our results are in agreement with recent theoretical and experimental findings for ferromagnetic metals in the dirty limit, where transport is by metallic conduction. We find the same scaling relation for magnetite, where hopping transport prevails. The fact that this relation is independent of crystallographic orientation, Zn content, strain state, and oxygen deficiency suggests that it is universal and particularly does not depend on the nature of the transport mechanism.
A short review paper for the quantum anomalous Hall effect. A substantially extended one is published as Adv. Phys. 64, 227 (2015).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا