ﻻ يوجد ملخص باللغة العربية
Using the approach based on Bogoliubov compensation principle is applied to calculation of a contribution to the muon $g-2$. Using the previous results on spontaneous generation of the effective anomalous three-boson interaction we calculate the contribution, which proves to agree with the well-known discrepancy. The calculated quantity contains no adjusting parameters but the experimental values for the muon and the W-boson masses. The result can be considered as a confirmation of the approach.
The electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM), with the lightest neutralino as Dark Matter (DM) candidate, can account for a variety of experimental data. This includes the DM content of the universe, DM direct detec
The evaluation of the hadronic contribution to the muon magnetic anomaly $a_mu$ is revisited, taking advantage of new experimental data on $e^+e^-$ annihilation into hadrons: SND and CMD-2 for the $pi^+pi^-$ channel, and babar for multihadron final s
The persistent discrepancy of about 3.5 standard deviations between the experimental measurement and the Standard Model prediction for the muon anomalous magnetic moment, $a_mu$, is one of the most promising hints for the possible existence of new ph
We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC--UKQCDs $N_f=2+1$ domain wall fermion ensembles with physi
We investigate the Kalb-Ramond antisymmetric tensor field as solution to the muon $g-2$ problem. In particular we calculate the lowest-order Kalb-Ramond contribution to the muon anomalous magnetic moment and find that we can fit the new experimental