ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudo Siamese Network for Few-shot Intent Generation

99   0   0.0 ( 0 )
 نشر من قبل Congying Xia
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Few-shot intent detection is a challenging task due to the scare annotation problem. In this paper, we propose a Pseudo Siamese Network (PSN) to generate labeled data for few-shot intents and alleviate this problem. PSN consists of two identical subnetworks with the same structure but different weights: an action network and an object network. Each subnetwork is a transformer-based variational autoencoder that tries to model the latent distribution of different components in the sentence. The action network is learned to understand action tokens and the object network focuses on object-related expressions. It provides an interpretable framework for generating an utterance with an action and an object existing in a given intent. Experiments on two real-world datasets show that PSN achieves state-of-the-art performance for the generalized few shot intent detection task.

قيم البحث

اقرأ أيضاً

Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances. Although recent works demonstrate that multi-level matching plays an important role in transferring learned knowledge from seen training classes to novel testing classes, they rely on a static similarity measure and overly fine-grained matching components. These limitations inhibit generalizing capability towards Generalized Few-shot Learning settings where both seen and novel classes are co-existent. In this paper, we propose a novel Semantic Matching and Aggregation Network where semantic components are distilled from utterances via multi-head self-attention with additional dynamic regularization constraints. These semantic components capture high-level information, resulting in more effective matching between instances. Our multi-perspective matching method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances. We also propose a more challenging evaluation setting that considers classification on the joint all-class label space. Extensive experimental results demonstrate the effectiveness of our method. Our code and data are publicly available.
In this paper, we formulate a more realistic and difficult problem setup for the intent detection task in natural language understanding, namely Generalized Few-Shot Intent Detection (GFSID). GFSID aims to discriminate a joint label space consisting of both existing intents which have enough labeled data and novel intents which only have a few examples for each class. To approach this problem, we propose a novel model, Conditional Text Generation with BERT (CG-BERT). CG-BERT effectively leverages a large pre-trained language model to generate text conditioned on the intent label. By modeling the utterance distribution with variational inference, CG-BERT can generate diverse utterances for the novel intents even with only a few utterances available. Experimental results show that CG-BERT achieves state-of-the-art performance on the GFSID task with 1-shot and 5-shot settings on two real-world datasets.
In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent lab els. To determine appropriate thresholds with only a few examples, we first learn universal thresholding experience on data-rich domains, and then adapt the thresholds to certain few-shot domains with a calibration based on nonparametric learning. For better calculation of label-instance relevance score, we introduce label name embedding as anchor points in representation space, which refines representations of different classes to be well-separated from each other. Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and effic ient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
Spoken intent detection has become a popular approach to interface with various smart devices with ease. However, such systems are limited to the preset list of intents-terms or commands, which restricts the quick customization of personal devices to new intents. This paper presents a few-shot spoken intent classification approach with task-agnostic representations via meta-learning paradigm. Specifically, we leverage the popular representation-based meta-learning learning to build a task-agnostic representation of utterances, that then use a linear classifier for prediction. We evaluate three such approaches on our novel experimental protocol developed on two popular spoken intent classification datasets: Google Commands and the Fluent Speech Commands dataset. For a 5-shot (1-shot) classification of novel classes, the proposed framework provides an average classification accuracy of 88.6% (76.3%) on the Google Commands dataset, and 78.5% (64.2%) on the Fluent Speech Commands dataset. The performance is comparable to traditionally supervised classification models with abundant training samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا