ترغب بنشر مسار تعليمي؟ اضغط هنا

Freiman cover ideals of unmixed bipartite graphs

76   0   0.0 ( 0 )
 نشر من قبل Guangjun Zhu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An equigenerated monomial ideal $I$ in the polynomial ring $R=k[z_1,ldots, z_n]$ is a Freiman ideal if $mu(I^2)=ell(I)mu(I)-{ell(I)choose 2}$ where $ell(I)$ is the analytic spread of $I$ and $mu(I)$ is the number of minimal generators of $I$. In this paper we classify all simple connected unmixed bipartite graphs whose cover ideals are Freiman ideals.

قيم البحث

اقرأ أيضاً

In this paper it is shown that a sortable ideal $I$ is Freiman if and only if its sorted graph is chordal. This characterization is used to give a complete classification of Freiman principal Borel ideals and of Freiman Veronese type ideals with constant bound.
The correspondence between unmixed bipartite graphs and sublattices of the oolean lattice is discussed. By using this correspondence, we show the existence of squarefree quadratic initial ideals of toric ideals arising from minimal vertex covers of unmixed bipartite graphs.
In this paper, we compute the regularity and Hilbert series of symbolic powers of the cover ideal of a graph $G$ when $G$ is either a crown graph or a complete multipartite graph. We also compute the multiplicity of symbolic powers of cover ideals in terms of the number of edges.
An equigenerated monomial ideal $I$ is a Freiman ideal if $mu(I^2)=ell(I)mu(I)-{ell(I)choose 2}$ where $ell(I)$ is the analytic spread of $I$ and $mu(I)$ is the least number of monomial generators of $I$. Freiman ideals are special since there exists an exact formula computing the least number of monomial generators of any of their powers. In this paper we give a complete classification of Freiman $t$-spread principal Borel ideals.
Let $D$ be a weighted oriented graph, whose underlying graph is $G$, and let $I(D)$ be its edge ideal. If $G$ has no $3$-, $5$-, or $7$-cycles, or $G$ is K{o}nig, we characterize when $I(D)$ is unmixed. If $G$ has no $3$- or $5$-cycles, or $G$ is Kon ig, we characterize when $I(D)$ is Cohen--Macaulay. We prove that $I(D)$ is unmixed if and only if $I(D)$ is Cohen--Macaulay when $G$ has girth greater than $7$ or $G$ is Konig and has no $4$-cycles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا