ﻻ يوجد ملخص باللغة العربية
Recently, topological phases in non-Hermitian systems have attracted much attention because non-Hermiticity sometimes gives rise to unique phases with no Hermitian counterparts. Non-Hermitian Bloch Hamiltonians can always be mapped to doubled Hermitianized Hamiltonians with chiral symmetry, which enables us to utilize the existing framework for Hermitian systems into the classification of non-Hermitian topological phases. While this strategy succeeded in the topological classification of non-Hermitian Bloch Hamiltonians in the presence of internal symmetries, the generalization of symmetry indicators -- a way to efficiently diagnose topological phases -- to non-Hermitian systems is still elusive. In this work, we study a theory of symmetry indicators for non-Hermitian systems. We define space group symmetries of non-Hermitian Bloch Hamiltonians as ones of the doubled Hermitianized Hamiltonians. Consequently, symmetry indicator groups for chiral symmetric Hermitian systems are equivalent to those for non-Hermitian systems. Based on this equivalence, we list symmetry indicator groups for non-Hermitian systems in the presence of space group symmetries. We also discuss the physical implications of symmetry indicators for some symmetry classes. Furthermore, explicit formulas of symmetry indicators for spinful electronic systems are included in appendices.
For ordinary hermitian Hamiltonians, the states show the Kramers degeneracy when the system has a half-odd-integer spin and the time reversal operator obeys Theta^2=-1, but no such a degeneracy exists when Theta^2=+1. Here we point out that for non-h
We classify topological phases of non-Hermitian systems in the Altland-Zirnbauer classes with an additional reflection symmetry in all dimensions. By mapping the non-Hermitian system into an enlarged Hermitian Hamiltonian with an enforced chiral symm
The hallmark of symmetry-protected topological (SPT) phases is the existence of anomalous boundary states, which can only be realized with the corresponding bulk system. In this work, we show that for every Hermitian anomalous boundary mode of the te
We classify topological defects in non-Hermitian systems with point gap, real gap and imaginary gap for all the Bernard-LeClair classes or generalized Bernard-LeClair classes in all dimensions. The defect Hamiltonian $H(bf{k}, {bf r})$ is described b
Topological phenomena in non-Hermitian systems have recently become a subject of great interest in the photonics and condensed-matter communities. In particular, the possibility of observing topologically-protected edge states in non-Hermitian lattic