ترغب بنشر مسار تعليمي؟ اضغط هنا

AvaTr: One-Shot Speaker Extraction with Transformers

374   0   0.0 ( 0 )
 نشر من قبل Xaq Pitkow
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

To extract the voice of a target speaker when mixed with a variety of other sounds, such as white and ambient noises or the voices of interfering speakers, we extend the Transformer network to attend the most relevant information with respect to the target speaker given the characteristics of his or her voices as a form of contextual information. The idea has a natural interpretation in terms of the selective attention theory. Specifically, we propose two models to incorporate the voice characteristics in Transformer based on different insights of where the feature selection should take place. Both models yield excellent performance, on par or better than published state-of-the-art models on the speaker extraction task, including separating speech of novel speakers not seen during training.



قيم البحث

اقرأ أيضاً

270 - Hongqiang Du , Lei Xie 2021
One-shot voice conversion has received significant attention since only one utterance from source speaker and target speaker respectively is required. Moreover, source speaker and target speaker do not need to be seen during training. However, availa ble one-shot voice conversion approaches are not stable for unseen speakers as the speaker embedding extracted from one utterance of an unseen speaker is not reliable. In this paper, we propose a deep discriminative speaker encoder to extract speaker embedding from one utterance more effectively. Specifically, the speaker encoder first integrates residual network and squeeze-and-excitation network to extract discriminative speaker information in frame level by modeling frame-wise and channel-wise interdependence in features. Then attention mechanism is introduced to further emphasize speaker related information via assigning different weights to frame level speaker information. Finally a statistic pooling layer is used to aggregate weighted frame level speaker information to form utterance level speaker embedding. The experimental results demonstrate that our proposed speaker encoder can improve the robustness of one-shot voice conversion for unseen speakers and outperforms baseline systems in terms of speech quality and speaker similarity.
Target-speaker speech recognition aims to recognize target-speaker speech from noisy environments with background noise and interfering speakers. This work presents a joint framework that combines time-domain target-speaker speech extraction and Recu rrent Neural Network Transducer (RNN-T). To stabilize the joint-training, we propose a multi-stage training strategy that pre-trains and fine-tunes each module in the system before joint-training. Meanwhile, speaker identity and speech enhancement uncertainty measures are proposed to compensate for residual noise and artifacts from the target speech extraction module. Compared to a recognizer fine-tuned with a target speech extraction model, our experiments show that adding the neural uncertainty module significantly reduces 17% relative Character Error Rate (CER) on multi-speaker signals with background noise. The multi-condition experiments indicate that our method can achieve 9% relative performance gain in the noisy condition while maintaining the performance in the clean condition.
This document describes our submission to the 2018 LOCalization And TrAcking (LOCATA) challenge (Tasks 1, 3, 5). We estimate the 3D position of a speaker using the Global Coherence Field (GCF) computed from multiple microphone pairs of a DICIT planar array. One of the main challenges when using such an array with omnidirectional microphones is the front-back ambiguity, which is particularly evident in Task 5. We address this challenge by post-processing the peaks of the GCF and exploiting the attenuation introduced by the frame of the array. Moreover, the intermittent nature of speech and the changing orientation of the speaker make localization difficult. For Tasks 3 and 5, we also employ a Particle Filter (PF) that favors the spatio-temporal continuity of the localization results.
110 - Zhuo Li , Ce Fang , Runqiu Xiao 2021
This paper describes the systems submitted by team HCCL to the Far-Field Speaker Verification Challenge. Our previous work in the AIshell Speaker Verification Challenge 2019 shows that the powerful modeling abilities of Neural Network architectures c an provide exceptional performance for this kind of task. Therefore, in this challenge, we focus on constructing deep Neural Network architectures based on TDNN, Resnet and Res2net blocks. Most of the developed systems consist of Neural Network embeddings are applied with PLDA backend. Firstly, the speed perturbation method is applied to augment data and significant performance improvements are achieved. Then, we explore the use of AMsoftmax loss function and propose to join a CE-loss branch when we train model using AMsoftmax loss. In addition, the impact of score normalization on performance is also investigated. The final system, a fusion of four systems, achieves minDCF 0.5342, EER 5.05% on task1 eval set, and achieves minDCF 0.5193, EER 5.47% on task3 eval set.
In this report, we describe the Beijing ZKJ-NPU team submission to the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). We participated in the fully supervised speaker verification track 1 and track 2. In the challenge, we explored various ki nds of advanced neural network structures with different pooling layers and objective loss functions. In addition, we introduced the ResNet-DTCF, CoAtNet and PyConv networks to advance the performance of CNN-based speaker embedding model. Moreover, we applied embedding normalization and score normalization at the evaluation stage. By fusing 11 and 14 systems, our final best performances (minDCF/EER) on the evaluation trails are 0.1205/2.8160% and 0.1175/2.8400% respectively for track 1 and 2. With our submission, we came to the second place in the challenge for both tracks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا