ﻻ يوجد ملخص باللغة العربية
The Best Estimate plus Uncertainty (BEPU) approach for nuclear systems modeling and simulation requires that the prediction uncertainty must be quantified in order to prove that the investigated design stays within acceptance criteria. A rigorous Uncertainty Quantification (UQ) process should simultaneously consider multiple sources of quantifiable uncertainties: (1) parameter uncertainty due to randomness or lack of knowledge; (2) experimental uncertainty due to measurement noise; (3) model uncertainty caused by missing/incomplete physics and numerical approximation errors, and (4) code uncertainty when surrogate models are used. In this paper, we propose a comprehensive framework to integrate results from inverse UQ and quantitative validation to provide robust predictions so that all these sources of uncertainties can be taken into consideration. Inverse UQ quantifies the parameter uncertainties based on experimental data while taking into account uncertainties from model, code and measurement. In the validation step, we use a quantitative validation metric based on Bayesian hypothesis testing. The resulting metric, called the Bayes factor, is then used to form weighting factors to combine the prior and posterior knowledge of the parameter uncertainties in a Bayesian model averaging process. In this way, model predictions will be able to integrate the results from inverse UQ and validation to account for all available sources of uncertainties. This framework is a step towards addressing the ANS Nuclear Grand Challenge on Simulation/Experimentation by bridging the gap between models and data.
In nuclear engineering, modeling and simulations (M&Ss) are widely applied to support risk-informed safety analysis. Since nuclear safety analysis has important implications, a convincing validation process is needed to assess simulation adequacy, i.
We present the VECMA toolkit (VECMAtk), a flexible software environment for single and multiscale simulations that introduces directly applicable and reusable procedures for verification, validation (V&V), sensitivity analysis (SA) and uncertainty qu
The lectures were prepared for the {E}cole Th{e}matique sur les Incertitudes en Calcul Scientifique (ETICS) in September 2021.
The problem of estimating certain distributions over ${0,1}^d$ is considered here. The distribution represents a quantum system of $d$ qubits, where there are non-trivial dependencies between the qubits. A maximum entropy approach is adopted to recon
This work affords new insights into Bayesian CART in the context of structured wavelet shrinkage. The main thrust is to develop a formal inferential framework for Bayesian tree-based regression. We reframe Bayesian CART as a g-type prior which depart